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INTRODUCTION

The material of a protoplanetary gas–dust cloud is a
complex multiphase medium with regions of various
densities, temperatures, and degrees of ionization. This
material, generally a dust plasma, is magnetized and is
in a state of strong turbulization. Understanding the
evolution of a protoplanetary cloud is a necessary pre-
requisite for solving the question about the formation of
the Earth and planets, a question intimately related to
the fundamental problem of cosmogony whose solution
is presently the biggest problem of science (see
Schmidt, 1957; Safronov, 1982; Galimov, 2001). The
planets are currently believed to be formed after the
dust subdisk produced through the differential rotation
of turbulized protoplanetary material in an orbit around
a solar-type star and accretion when dust settles to the

midplane of the disk
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 perpendicular to the rotation axis
loses its gravitational stability (Toomre, 1964;
Safronov, 1969, 1982; Goldreich and Ward, 1973; Nak-
agawa 

 

et al.

 

, 1986; Makalkin, 1994; Youdin and Shu,
2002). It is now clear that the Solar planetary system
was formed from the subdisk material through the for-
mation of discrete compaction centers and their subse-
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The flattening of a rotating protoplanetary cloud results from the
confrontation between two main dynamical forces, the gravita-
tional and centrifugal ones. When there is an equilibrium between
these forces, weaker factors, such as the thermal and viscous pro-
cesses, the disk self-gravity, and the electromagnetic phenomena,
become important for the evolution of the cloud. Due to the vis-
cous forces of friction (arising from the relative shear of gas-sus-
pension elements during their orbital motion), the disk material
drifts toward the proto-Sun along a flat spiral trajectory as its
angular momentum is transferred outward, from the inner disk
regions to the outer ones.
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Abstract

 

—We formulate a complete system of equations of two-phase multicomponent mechanics including
the relative motion of the phases, coagulation processes, phase transitions, chemical reactions, and radiation in
terms of the problem of reconstructing the evolution of the protoplanetary gas–dust cloud that surrounded the
proto-Sun at an early stage of its existence. These equations are intended for schematized formulations and
numerical solutions of special model problems on mutually consistent modeling of the structure, dynamics,
thermal regime, and chemical composition of the circumsolar disk at various stages of its evolution, in partic-
ular, the developed turbulent motions of a coagulating gas suspension that lead to the formation of a dust sub-
disk, its gravitational instability, and the subsequent formation and growth of planetesimals. To phenomenolog-
ically describe the turbulent flows of disk material, we perform a Favre probability-theoretical averaging of the
stochastic equations of heterogeneous mechanics and derive defining relations for the turbulent flows of inter-
phase diffusion and heat as well as for the “relative” and Reynolds stress tensors needed to close the equations
of mean motion. Particular attention is given to studying the influence of the inertial effects of dust particles on
the properties of turbulence in the disk, in particular, on the additional generation of turbulent energy by large
particles near the equatorial plane of the proto-Sun. We develop a semiempirical method of modeling the coef-
ficient of turbulent viscosity in a two-phase disk medium by taking into account the inverse effects of the trans-
fer of a dispersed phase (or heat) on the growth of turbulence to model the vertically nonuniform thermohydro-
dynamic structure of the subdisk and its atmosphere. We analyze the possible “regime of limiting saturation”
of the subdisk atmosphere by fine dust particles that is responsible for the intensification of various coagulation
mechanisms in a turbulized medium. For steady motion when solid particles settle to the midplane of the disk
under gravity, we analyze the parametric method of moments for solving the Smoluchowski integro-differential
coagulation equation for the particle size distribution function. This method is based on the fact that the sought-
for distribution function 

 

a priori

 

 belongs to a certain parametric class of distributions.

PACS numbers: 95.30.Lz

 

DOI: 

 

10.1134/S0038094606010011



 

2

 

SOLAR SYSTEM RESEARCH

 

      

 

Vol. 40

 

      

 

No. 1

 

      

 

2006

 

KOLESNICHENKO, MAROV

 

quent growth (see, e.g., Safronov, 1982, 1987). It is
important to emphasize that one of the key viewpoints
in astrophysics regarding the origin and structure of cir-
cumstellar gas–dust accretion disks of any type is their
turbulent nature (Zel’dovich, 1981; Fridman, 1989;
Dubrulle, 1993; Balbus and Hawley, 1998; Richard and
Zahn, 1999; Bisnovatyi-Kogan and Lovelace, 2001).

Therefore, adequate numerical simulations of the
evolution of the protoplanetary cloud that surrounded
the Sun at an early stage of its existence generally
require taking into account the dynamical processes of
the interaction between turbulized gas and dust, in par-
ticular, the modification of the carrier-phase turbulence
energy by solid particles (i.e., the inverse effect of the
dust component on the turbulent and thermal regimes of
the disk gas component) and the influence of turbulence
on the rates of phase transitions (evaporation and con-
densation in the cooling disk), on the jumplike dis-
perse-particle accumulation processes (coagulation and
fragmentation when particles mutually collide with one
another in a flow), and, finally, on the settling of solid
particles through the gas to the midplane of the disk,
where they form a flattened dust layer (subdisk). In
general, fine solid particles (a relatively low-inertia gas-
suspension component) have a laminarizing effect on a
two-phase turbulent flow (via the growth of additional
dissipation), while coarse particles enhance the genera-
tion of pulsational energy via the formation of a vortex
wake. It should be noted that the dust phase may be dis-
regarded only at the initial evolutionary stage of the
cosmic system under consideration when almost all of
the primordial (interstellar) solid particles have already
evaporated.

 

2

 

 At later evolutionary stages of the pro-
toplanetary cloud, as the disk cooled down, the dust
particles condensed, their sizes increased (mainly
through coagulation), and the gas dissipated from the
disk system into interstellar space, the dynamical, ener-
getic, and optical roles of the dust component increased
significantly. In this case, when the disk medium is
modeled, it is important to take into account the influ-
ence of dust on the flow turbulence, which is generally
ambiguous and strongly depends on the volume content
(concentration) and inertia of the solid particles. In par-
ticular, such effects of the dust component on the disk
turbulence as the turbulent “diffusion” transfer of the
disperse component attributable to the spatial nonuni-
formity of the dust particle distribution in the disk, the
generation of additional turbulent disturbances via the
collective effects related to interparticle collisions
between solid particles (Shraiber 

 

et al.

 

, 1980), the for-
mation of vortex structures behind the streamlined
large particles during the separation of the carrier gas
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Being constituents of the protoplanetary disk, the dust particles
either evaporated when they fell into its inner high-temperature
region or were preserved partially (or completely) in farther
(from the Sun) and, hence, colder regions.

 

flow, and the combined effect of these two flow turbuli-
zation mechanisms etc. become important at certain
evolutionary stages of a heterogeneous mixture. In
addition, the very presence of a polydisperse admixture
in a turbulent flow complicates significantly the disk
hydrodynamics, contributing to the realization of addi-
tional cosmic flow regimes. In particular, an increase in
the concentration of solid particles in a heterogeneous
flow related to the dust settling to the midplane of the
disk under the vertical gravity of the proto-Sun leads to
an additional local enhancement of the generation of
turbulent flow energy attributable to the growth of the
transverse relative phase velocity gradient near the mid-
plane, i.e., to flow returbulization (cf. Goldreich and
Ward, 1973).

In addition, the efficiency of the accretion mecha-
nisms in a protoplanetary cloud (particularly at the sub-
disk formation stage) also depends significantly on the
intensity of its turbulization; turbulence can have a
completely unexpected effect on the particle coagula-
tion in various situations, but it probably always con-
tributes to the coagulation (Voloshchuk and Sedunov,
1975). Thus, for example, if the internal Kolmogorov
turbulence scale length 

 

λ

 

K

 

 is smaller than or compara-
ble to the disperse particle size, then there is a turbulent
motion of particles (similar to Brownian motion) that
leads to their mutual collisions, i.e., to turbulent coagu-
lation (which complements the effective gravitational
coagulation in a quiet gas). For particles whose sizes
are much smaller than 

 

λ

 

K

 

, turbulence affects the evolu-
tion of fine dust through different channels. In this case,
the enhancement of various coagulation processes (pro-
duced by factors other than turbulence) will result from
intense turbulent particle mixing at distances larger
than the Kolmogorov scale length, when the number of
mutual collisions between solid particles per unit time
increases significantly
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 compared to a laminar flow

 

4

 

due to chaotic turbulent pulsations. Therefore, apart
from the gravitational accretion, the nongravitational
accretion related, for example, to the Brownian coagu-
lation, electric coagulation, turbulent Brownian coagu-
lation of charged and neutral particles, etc. becomes an
efficient solid particle accumulation mechanism. As the
inertia of the particles increases, they will be involved
in the pulsational (vortex) gas-suspension motion to a
progressively lesser extent; in the long run, this leads to
their effective settling to the equatorial plane of the pro-
tostar. Thus, contrary to the opinions of many research-

 

3

 

Below, each collision between particles is assumed to lead to
their coalescence (this is the so-called fast coagulation without
attractive forces), but the adhesion mechanism itself is not dis-
cussed in this paper.
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Turbulent pulsations can contribute to drawing fine particles into
the hydrodynamic wake or into the zone of action of the induc-
tion forces in the case of likely charged particles and can also
promote the electrostatic coagulation via the destruction of the
screening (Voloshchuk and Sedunov, 1975).
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ers (see, e.g., Makalkin, 2003), turbulence of the gas–
dust medium contributes in one way or another to the
formation of a subdisk whose gravitational instability
eventually leads to the formation of planetesimals.

Finally, there are strong arguments for the assump-
tion that plasma effects played a significant role during
the formation of the circumsolar protoplanetary disk
and its early evolution. In general, the cosmic plasma is
a dust plasma, i.e., contains very fine dust particles.
Since any accretion disk contains solid particles of var-
ious sizes, there probably exists a boundary linear
scale
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 (dependent on the electromagnetic and gravita-
tional fields as well as on the particle charge and den-
sity) that separates the small particles comprising the
dust plasma and the large particles whose motion is
determined by the action of nonelectromagnetic forces.
Photoelectron emission and collisions with plasma
electrons and positive ions are known to be the main
physical processes that determine the grain surface
charge (see. e.g., Alfven and Arrenius, 1979). At the
same time, a solid particle in a cosmic plasma is more
frequently charged negatively to a potential of the order
of several volts via collisions with electrons.
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 When an
electrically conducting two-phase medium moves in an
electromagnetic field, the Lorentz ponderomotive force
acts on the charged particles, which gives rise to a num-
ber of additional effects, particularly during flow turbu-
lization (see, e.g., Vereshchagin 

 

et al.

 

, 1974; Busroid,
1975). In particular, such unique properties as high dis-
sipativity, the capability for the self-organization and
formation of ordered structures are characteristic of a
turbulent dust plasma.

The synenergetic processes of self-organization in
the thermodynamically open system of a protoplane-
tary cloud against the background of a large-scale shear
flow of cosmic material related to its differential rota-
tion are also a very important mechanism that shapes
the properties of the cloud at various stages of its evo-
lution, including the formation of a viscous accretion
disk around the young Sun that was passing through the
T Tauri stage, the formation of a dust–gas subdisk, the
destruction of the latter due to gravitational instability,
and the production of discrete compaction centers fol-
lowed by the formation of and growth of planetesimals.
This also applies to the formation of various mesoscale,
relatively stable gas–dust coherent structures in the disk
that probably provide the most favorable conditions for
the mechanical and physical–chemical interaction
between material particles (see Barge and Sommeria,
1995; Tanga 

 

et al.

 

, 1996; Chavanis, 1999; Kolesnichenko,
2004). As a result, spontaneous formation and growth
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Typically, it is ~10

 

–5

 

–10

 

–7

 

 m.
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In the cases where a particle falls into a plasma region with a
large number of suprathermal electrons, its negative potential can
reach values of the order of several thousand volts, as a result of
which it is trapped by the plasma.

 

of a condensed dust component,
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 intensification of
phase transitions and heat and mass transfer at various
thermohydrodynamic parameters of the carrier and dis-
perse phases, significant modification of the oscillation
spectrum in a heavily dusted medium, etc. take place.

The protoplanetary accretion disks are known to
have a significant viscosity; in combination with the
differential rotation of their material, this gives rise to a
permanent “intrinsic” source of thermal energy in
them. Shear turbulence (Gor’kavyi and Fridman, 1994;
Fridman 

 

et al.

 

, 2003) and random magnetic fields (see
Armitage 

 

et al.

 

, 2001), with the energy of the latter
being often comparable to the hydrodynamic turbu-
lence energy,

 

8

 

 are currently believed to be most likely
responsible for the viscosity of differentially rotating
disks.

There is extensive literature on modeling the evolu-
tion of the circumsolar protoplanetary disk without dust
(see, e.g., the vast bibliography to the review paper by
Bisnovatyi-Kogan and Lovelace (2001)). At the same
time, the few publications on dusty disk systems cover
a comparatively narrow range of problems pertaining to
the problem under consideration and the results
obtained in them are limited, since the turbulence mod-
els for two-phase “gas–solid particles” media discussed
in them cannot be recognized to be quite satisfactory
(see, e.g., Weidenschilling, 1977, 1980; Sekiya and
Nakagawa, 1988; Cuzzi 

 

et al.

 

, 1993; Dubrulle, 1993;
Dubrulle 

 

et al.

 

, 1995; Stepinski and Valageas, 1996,
1997; Goodman and Pindor, 2000; Takeuchi and Lin,
2002, 2003; Youdin and Goodman, 2004). In particular,
this is because the currently existing theory of turbu-
lence of heterogeneous flows is imperfect due to both
the incompleteness of the “classical” theory of hydro-
dynamic turbulence and the various additional regimes
of two-phase turbulent flows realized in the disk when
varying the volume content and sizes of solid particles
in the gas-suspension flow.

For this reason, in the presented series of papers, as
applied to the problem of reconstructing the evolution
of a protoplanetary gas–dust cloud, we attempt to
develop a continuum model for a heterogeneous disk
medium that includes the combined influence of mag-
netohydrodynamic and turbulence effects on the
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One of the possible scenarios for the formation and growth of
dust particles in plasma consists of the following stages: first, pri-
mary clusters are formed; after the passage of a critical size, the
stage of heterogeneous condensation begins; at the next stage,
coagulation and agglomeration (adhesion) come to the fore; at the
final stage, the surface recombination of ions, which leads to con-
tinuous cooling of the material on the surfaces of isolated multi-
ply charged ions, becomes most important.
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The random magnetic fields stretching together with the accreting
plasma, get mixed due to the differential rotation of the disk, and
reconnecting at the boundaries between chaotic cells will also
contribute significantly to the viscosity in the inner regions of the
disk and in its outer atmospheric layers, where a sufficient degree
of ionization of the material is reached. Large-scale magnetic
fields can also play an important role in accretion physics (see
Eardley and Lightman, 1975).
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dynamics and heat and mass transfer in differentially
rotating cosmic material by taking into account the
inertial properties of a polydisperse admixture of solid
particles, coagulation, and radiation. In this paper,
which opens this series, we dwell mainly on the follow-
ing four aspects of the problem of modeling a disk
medium without touching on plasma effects:

—Formulating a basic system of mass, momentum,
and energy conservation equations for the instanta-
neous (actual) parameters of the flow of a gas–dust
mixture and radiation that are intended for numerical
simulations of the circumsolar protoplanetary disk at
various stages of its evolution (in particular, the laminar
subdisk formation stage) and in spatial zones located at
various distances from the protostar;

—Weighted (Favre) averaging of the stochastic
equations of motion of two-phase mechanics to phe-
nomenologically describe the averaged gas-suspension
flow and the processes of turbulent heat and mass trans-
fer in a gas–dust disk;

—Deriving the defining relations for the correlation
parameters of a turbulent two-phase flow needed to
close the hydrodynamic equations of mean motion;

—Modeling the turbulent transfer coefficients in a
gas–dust disk by taking into account the inverse effect
of the polydisperse component on the turbulence inten-
sity of the carrier gas.

BASIC EQUATIONS OF THE MECHANICS 
OF HETEROGENEOUS MEDIA 

IN A PROTOPLANETARY GAS–DUST CLOUD

The motion of a gas suspension in a gas–dust accre-
tion disk can probably be modeled most adequately in
terms of the mechanics of heterogeneous turbulized
media by taking into account the peculiarities of the
physical–chemical properties of the phases, heat and
mass transfer and radiation, chemical reactions, phase
transitions, coagulation, fragmentation, etc. The evolu-
tion of such media is studied by invoking new thermo-
hydrodynamic parameters and by solving more com-
plex equations than those that we deal with in “ordi-
nary” hydrodynamics. In this case, the intraphase and
interphase interactions in heterogeneous media are
occasionally very difficult to describe in detail, and
rational schematizations leading to manageable and
solvable equations are particularly needed here to
obtain reliable results and to understand them.

In general, the continuity and energy equations and
the equations of motion for each individual phase are
used in the above and other known works on the contin-
uum modeling of turbulized accretion disks with dust
(Nakagawa 

 

et al.

 

, 1981; Weidenschilling, 1984;
Hayashi 

 

et al.

 

, 1985; Nakagawa 

 

et al.

 

, 1986; Schmitt

 

et al.

 

, 1997; Balbus and Hawley, 1998). The authors
have to heuristically specify the laws of interphase
interactions, in particular, the rates of momentum and
energy transfer between the phases. This approach is an

analog of Grad’s thirteen-moment method (Grad,
1949), which gained wide acceptance, for example, in
the kinetic theory of a multicomponent plasma. The
subsequent averaging of the mutually coupled hydro-
dynamic equations for the individual phases (to
describe the turbulized motions) leads not only to cum-
bersome equations of mean motion, which is related to
the need for retaining a large number of correlation

moments of the pulsating parameters (such as 

 

,

, , 

 

, and the like) in their structure, but
also to difficulties in physically interpreting each indi-
vidual term in the averaged equations. To overcome
these difficulties and to simplify the problem, some of
the authors often unjustifiably discard a number of cor-
relation terms, which, of course, narrows the range of
application of such an approach.

At the same time, the evolution of a turbulized gas–
dust cloud can be modeled in the single-velocity
approximation of heterogeneous mechanics, which is
similar to the Chapman–Enskog moment method of
solving the system of Boltzmann kinetic equations for
multicomponent gas mixtures (see, e.g., Chapman and
Cowling, 1960; Marov and Kolesnichenko, 1987). In
the case under consideration, this approach is peculiar
in that, despite the hydrodynamic velocity difference
between the individual phases and the related necessity
of allowing for the dynamical and inertial effects of
their relative motion, the continuum description of a
disk medium can be made using the laws of conserva-
tion of mass, momentum, and energy for the system as
a whole supplemented with the defining (closing) rela-
tions for a number of thermohydrodynamic flows, both
intraphase and interphase ones. In particular, the gener-
alized Stefan–Maxwell relations that were derived by
Kolesnichenko and Maksimov (2001) for heteroge-
neous media with sufficient completeness and logical
coherence by the methods of nonequilibrium thermo-
dynamics can be used for the interphase diffusion flows
(or the relative velocities of the phases). It is important
to emphasize that using the total continuum alone to
model the gas–dust cosmic material allows us, when
using the Favre weighted averaging (Favre, 1969), to
average the hydrodynamic equations for the disk
medium as a whole fairly accurately (see, e.g., Marov
and Kolesnichenko, 2002).

 

Basic Assumptions

 

The huge variety, mutual influence, and complexity
of the multiphase effects in the solar protoplanetary
cloud (phase transitions, chemical reactions, heat trans-
fer, gravitational interaction, pulsational and random
motions, rotation, radiation, coagulation, etc.) neces-
sarily require appropriately schematizing the descrip-
tion of the motion of a gas–dust medium. Therefore, in
this paper, we will assume that the motion of a disperse

ρg' ug'

ρd' ud' ud' T 'ud' ρg' T '
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mixture

 

9

 

 in a protoplanetary disk can be adequately
described under the following assumptions:

(1) the dust particles

 

10

 

 (by which we mean below a
solid-phase condensate) are solid, nondeformable,
spherical in shape, and polydisperse;

(2) the dust particle material is assumed to be
incompressible, 

 

ρ

 

d

 

 = const;
(3) the true dust density is much higher than the true

gas density of the system, 

 

ρ

 

d

 

 

 

�

 

 

 

ρ

 

g

 

;
(4) the volume concentration of the disperse phase is

moderately high (

 

s

 

2

 

 

 

�

 

 1

 

), so the terms of order 

 

s

 

2

 

 may
be neglected;

(5) the carrier phase is a compressible multicompo-
nent perfect gas;

(6) the diffusion transfer of molecules of all chemical
types relative to one another may be ignored, 

 

u

 

α

 

(

 

k

 

)

 

 

 

≡

 

 

 

u

 

α

 

;
(7) the viscosity and thermal conductivity of the dis-

perse phase may be disregarded, 

 

P

 

d

 

 = 0

 

 and 

 

q

 

d

 

 = 0;
(8) the gas and disperse phases are assumed to be in

thermal equilibrium, 

 

T

 

g

 

 = 

 

T

 

d

 

 = 

 

T

 

;
(9) the total heterogeneous continuum is considered

in the single-pressure approximation, 

 

p

 

g

 

 = 

 

p

 

d

 

 = 

 

p

 

(

 

ρ

 

g

 

, 

 

T

 

)

 

;
(10) the heterogeneous reactions on the surfaces of

solid particles may be disregarded;
(11) the contribution from the interphase bound-

aries

 

11

 

 (the near-surface layer of solid particles) to the
energetics of the disk system as a whole may be
neglected;

(12) it is assumed that the rotation of the solid parti-
cles may be ignored when describing the dynamical
interaction between the phases;

(13) the heat transfer between the disperse particles
and the carrier gas may be disregarded.

Thus, we are going to model a heterogeneous con-
tinuum composed of two contacting phases, a carrier
gas phase of solar composition and a disperse phase of
solid condensed particles of complex chemical compo-
sition (see, e.g., Dorofeeva and Makalkin, 2004), at
absolute temperature 

 

T

 

 and pressure 

 

p

 

12

 

 and well-
mixed inside each macrovolume element 

 

δ

 

�

 

 of the disk

 

9

 

From the standpoint of thermodynamics and mechanics of a con-
tinuum medium, the disperse phase may be treated as a “pseudo-
gas” whose “pseudomolecules” are disperse particles.
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In this paper, by the dust particles we mean solid bodies with
sizes from one micron to several hundred meters.
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The presence in heterogeneous systems of interphase boundaries
modeled by mathematical surfaces on which the fields of various
thermodynamic parameters become discontinuous severely com-
plicates the continuum theory of multiphase multicomponent sys-
tems (see Nigmatulin, 1978).

 

12

 

Note that this is the condition only for thermal and mechanical
equilibrium of the phases, but not for total phase equilibrium,
which additionally requires that the chemical potentials of the
phases (which are the key concept of the theory of phase equilib-
rium) be equal. In addition, in chemical equilibrium, i.e., for an
equilibrium distribution of chemical components between the
two phases, their chemical potentials must have a constant value
in both phases.

 

medium.
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 Each phase is assumed to be a homoge-
neous 

 

n-component mixture (with each geochemically
significant material of the protoplanetary cloud being
present in each phase α). Below, we use the Greek sub-
scripts α, β, … to denote the phases and refer the Latin
subscripts in parentheses of type (k) or (i) for any quan-
tity to the molecular component of the phase. The gas
phase (α = g) is the carrier medium14 described by the
model of a viscous fluid. The disperse phase (α = d)
present in the form of solid inclusions (however, we
will not ignore the collisions between them) is inviscid
and non-heat-conductive. For each of the two phases at
each space-time point (x, t), we define the mass density,
hydrodynamic velocity, internal energy, and other ther-
mohydrodynamic parameters pertaining to its own con-
tinuum and its own chemical component of the mixture.
As the phase parameters, we will use quantities aver-
aged both over the total macrovolume element δ� =

 pertaining to the heterogeneous system as a

whole and over the part δ�α of the volume element
occupied by the individual phase α. In particular, apart
from the distributed (spread over the total volume δ�)
mass density  of phase α, we will use below the true
(physical) density ρα (equal to the ratio of the mass of
the phase-α particles in the macrovolume element δ�
to the part of this volume δ�α occupied by the phase).
The latter is defined by the expression

(1)

where sα is the so-called volume content15 (or volume
concentration) of phase α. The true (ρα) rather than dis-
tributed ( ) phase density, together with other param-
eters of the state, such as the temperature Tα, internal
energy eα, and entropy Sα, determines the thermody-
namic properties of an elementary phase-α macroparti-
cle in its various states. In addition, the values of sα also
directly affect the hydrodynamic motion of the phases,
since it appears in the corresponding equations of
motion. Concurrently, we will assume that r indepen-
dent chemical reactions, including the interphase reac-
tions and the cases where the chemical transformations
are reduced to the displacement of component k from
one phase to the other, are possible between the individ-
ual chemical components k of the disk system.

Assuming a local thermodynamic equilibrium
within each phase and a local thermal equilibrium
between radiation and matter, we will use a phenome-

13For the continuum approximation to be applicable, the linear
sizes of the macrovolume element δ� must be much larger than
those of the disperse inclusions, but much smaller than the hydro-
dynamic scale length Lhydr.

14Occasionally, we will use numbers instead of letters to denote the
gas and condensed phases, referring the subscript α = 1 to the gas
phase and α = 2 to the disperse-phase parameters.)

15The parameter sα is often called phase saturation.

δ�αα∑

ρ̃α

ρα ρ̃α/sα, sα δ�α/δ�, sα

α
∑≡ 1,= =

ρ̃α
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nological theory of multifluid interpenetrating continua
to describe the hydrodynamic motions in a gas–dust
medium (with the corresponding physical–chemical
properties). In particular, this theory includes the
dynamical effects due to the inequality of the hydrody-
namic velocities uα of the phases in the system (see,
e.g., Nigmatulin, 1978; Kolesnichenko and Maksimov,
2001).

The Conservation of Mass

Monodisperse gas–dust medium. Let us first con-
sider the case where all condensed particles of the pro-
toplanetary gas–dust disk in each macrovolume ele-
ment δ� have the same instantaneous hydrodynamic
velocity ud(x, t), irrespective of their sizes. The mass
density ρ(x, t) and the weighted mean hydrodynamic
velocity u(x, t) (the instantaneous center-of-mass
velocity of the gas-suspension macrovolume element
centered at point x) of the gas–dust mixture as a whole
are defined by

(2)

(3)

where ρα(x, t) and uα(x, t) are the true mass density and
hydrodynamic velocity of phase α, respectively; sd(x, t)
is the instantaneous volume concentration of the dis-
perse phase, (sg + sd = 1); below, we omit the subscript
“d” of the parameter sd, sd ≡ s.

To model the chemical composition of a protoplan-
etary cloud, particularly at early stages of its evolution
(see, e.g., Willacy et al., 1998; Dorofeeva and
Makalkin, 2004), we must generally invoke the mass
balance equations for each chemical component of the
phase, which can be represented as the equations for the
conservation of particles of type k in phase α. Under the
above assumptions, these equations take the form

(4)

or

(5)

Here, d(…)/dt ≡ ∂(…)/∂t + u · ∇(…) is the substantial
derivative related to the motion of the macrovolume
element of the gas–dust medium as a whole; ∇(…) =

ρ ραsα

α
∑ ρg 1 s–( ) ρds,+= =

u ρ 1– ραsαuα

α
∑ ρg 1 s–( )

ρ
---------------------ug

ρds
ρ

--------ud,+= =

∂
∂t
----- sαnα k( )( ) ∇ sαnα k( )uα( )+ σα k( )=

≡ να k( ) ρ, ξρ δ2αnα k( )+
ρ 1=

r

∑
α 1 2; k, 1 2 … n, , ,= =( )

°

ρ d
dt
-----

sαnα k( )

ρ
----------------⎝ ⎠

⎛ ⎞ ∇ sαnα k( )wα( )+ σα k( ),=

wα uα u–( ).≡

∂(…)/∂xi is a vector differential operator; il (l = 1,
2, 3) are the Cartesian unit vectors along the corre-
sponding coordinate axes; the quantity ∇ · b is the
divergence of b; nα(k)(x, t) is the number of particles of
chemical substance k in a unit volume occupied by
phase α (countable concentration); wα(x, t) is the
instantaneous diffusion velocity of phase α that, by the
definition of the weighted mean velocity u, satisfies the
relation

(6)

or

(7)

where ρα = nα(k); Jα(x, t) is the mass diffusion
flux of phase-α particle; σα(k) is the production rate of
particles of component k per in a unit volume via chem-
ical reactions and phase transitions (evaporation and
condensation) as well as the fragmentation and coagu-
lation of the disperse component; ξρ(x, t) is the rate of
chemical reaction ρ (including the interphase reactions
and phase transitions), ρ = 1, 2, …, r; να(k), ρ is the sto-
ichiometric coefficient of component k in phase α with
respect to chemical reaction ρ,16 whose stoichiometric
equation can be symbolically written as (see, e.g., Pri-
gogine and Defay, 1966)

, (8)

the principle of conservation of total mass in chemical
reaction ρ; �(k) is the molecular mass of component k;

 is a quantity that describes the change in the num-
ber density of chemical component k in the dust phase
related to the fragmentation or adhesion of condensed
particles in the gas–dust cloud.

If the mass of all chemical components in the dust
phase is conserved during the transformation of solid

particles (  = 0), then the following differ-
ential conservation equation follows from Eq. (4):

(9)

16We assume that the stoichiometric coefficients of the components
produced during the reaction (from left to right) are positive,
while the coefficients of the expendable components are negative.

iil∑

ραsαwα

α
∑ 0, wα uα u–( )≡=

Jα

α
∑ 0, Jα ραsαwα≡ ραsα uα u–( ),= =

M k( )k∑

να k( ) ρ, � k( )

k

∑
α
∑ 0, ρ 1 2 … r, , ,=( )=

nα k( )
°

� k( )nα k( )k∑ °

ρ d
dt
-----

ραsα

ρ
-----------⎝ ⎠

⎛ ⎞ ∇ ραsαwα( )+ σαβ να ρ, ξρ

ρ 1=

r

∑= =

α β, 1 2,=( )
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for the distributed mass density

(10)

of phase α. Here, να, ρ ≡ να(k), ρ; the quantity
σαβ(x, t) characterizes the rate of mass transformation
from phase α to phase β (or vice versa, then σαβ < 0) via
chemical reactions and the evaporation or condensation
of material in the protoplanetary cloud; in this case,
σαβ = –σβα. For our subsequent purposes, it is appropri-
ate to introduce the mass phase concentrations Cα(x, t),

, (11)

and the relative velocity of the dust and gas, w ≡ wdg =
(ud – ug); Eqs. (9) can then be written in a more com-
pact form,

(12)

Given (7) and (8), the law of conservation of total
mass obtained by summing (4) over the indices k and α
takes a standard form,

(13)

as in a single-phase continuum. Note that radiation
does not modify the continuity equation (13), since it
“does not possess” any mass.

Next, we will assume that the material of the solid
inclusions remains incompressible during the evolution
of the gas–dust cloud, i.e., the true (physical) dust den-
sity is ρd = const. The instantaneous equation (12) for
dust is then be reduced to the equation

(14)

which allows the volume content s(x, t) of the dust com-
ponent in a two-phase flow to be found at a given rela-
tive velocity of the phases w. Thus, Eqs. (13) and (14)
can be used instead of the two equations (9) to calculate
the parameters ρ and s (and, hence, the gas density ρg
[see Eq. (2)].

The intensity of the force interaction between the
phases and the radiation parameters in a gas–dust cloud
strongly depend on the characteristic size of the solid
inclusions (e.g., the characteristic volume of one dust

ρ̃α sα � k( )nα k( )

k

∑≡ ραsα=

� k( )k∑

Cα
ρ̃α

ρ
-----≡

ραsα

ρ
-----------, Cα

α
∑ 1= =

ρ
dCα

dt
--------- ∇ Jα σαβ α β, 1 2,=( ),+⋅–=

J1 2,

ρC1w1 ρC1C2w–=

ρC2w2 ρC1C2w.=⎩
⎨
⎧

=

ρ d
dt
----- 1

ρ
---⎝ ⎠

⎛ ⎞ ∇ u⋅– 0, or
∂ρ
∂t
------ ∇ ρu( )⋅+ 0,= =

ρ d
dt
----- s

ρ
---⎝ ⎠

⎛ ⎞ ∇– swd( )⋅ ρd
1– σdg,+=

wd Cgw 1 s–( )
ρg

ρ
-----w,= =

particle (x, t)) and their total number Nd ≡ s
in a unit total gas-suspension volume. If all solid-phase
condensates are spherical or nearly spherical with the

characteristic Feret diameter (x, t), then  =

(π/6) . The balance equation for the total number of
disperse particles Nd(x, t) can be derived from (4):

(15)

where the source term  ≡ , which character-
izes the change in the total number density of different-
scale solid particles via coagulation and fragmentation,
is generally defined by the Smoluchowski kinetic equa-
tion (see Eq. (29)). An important parameter of the coag-
ulating mixture in a two-phase flow, the characteristic

volume (x, t) (or the mean linear diameter ) of the
solid inclusions, can be determined from the known
parameters Nd and s:

(16)

If we disregard the fragmentation and coagulation of

solid particles (  = 0) and the evaporation and con-
densation processes (σdg = 0) in our numerical simula-
tions of the evolution of a gas–dust cloud and assume
that the material of the inclusions is incompressible

(ρd = const), then we will have  = const. Under these

assumptions,  = sρd = ρd Nd, and Eq. (15) (with a
zero right-hand side) is just a corollary of the mass con-
servation equation (14) for the second phase, which in
this case takes a simple form,

(14*)

Interphase Diffusion

As we already said above, the generalized Stefan–
Maxwell relations can serve as the basic equations in
analyzing the phase diffusion in a gas–dust cloud.
Using the kinetic theory, Hirschfelder, Curtiss, and Bird
(1954) considered in detail the diffusion in a multicom-
ponent mixture of gases in their monograph. Their main
result is that the relative diffusion velocity (u(j) – u(k)) of
two gas components can be caused by factors that do
not directly affect these components, for example, by
the thermodynamic forces acting on the molecules of
the other mixture components. The velocities (u(j) – u(k))
can be found (to the first approximation of the Chap-

Ũd nd k( )k∑

d̃ Ũd

d̃
3

ρ d
dt
-----

Nd

ρ
------⎝ ⎠

⎛ ⎞ ∇ Ndwd( )⋅+ σNd
=

≡ νd k( ) ρ, ξρ Nd,+
ρ 1=

r

∑
k

∑ °

Nd
° nα k( )k∑ °

Ũd d̃d

Ũd s/Nd, d̃d 6/π( ) s/Nd( )3 .= =

Nd
°

Ũd

ρ̃d Ũd

ρ d
dt
----- s

ρ
---⎝ ⎠

⎛ ⎞ ∇ swd( )⋅+ 0, wd Cgw.= =
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man–Enskog method of solving the Boltzmann equa-
tions) from the system of Stefan–Maxwell equations

which can be written in the form of equations of motion
for the individual mixture components (see, e.g., Note I
in the monograph by Chapman and Cowling (1960)),

Here, ρ(k) = M(k)n(k), C(k) = ρ(k)/ρ, and p(k) are the mass
density, mass concentration, and partial pressure of the
particles of type k, respectively; p =  is the total
pressure of the mixture (the Dalton law), p(k) = n(k)kBT;

kB is the Boltzmann constant; n = , and ρ =

 are the total number and mass densities of the

multicomponent mixture, respectively; �(jk) are the
binary diffusion coefficients; F(k) is the external bulk
force (per unit mass of component k); and kT(k) is the
thermodiffusion ratio.

Kolesnichenko (1998) derived these Stefan–Max-
well relations for multicomponent mixtures by the
methods of nonequilibrium thermodynamics, while
Kolesnichenko and Maksimov (2001) generalized them
to heterogeneous mixtures (they can also be written in
the form of equations of motion for the individual
phases of the system). In the single-pressure approxi-
mation (pg = pd) considered here, these relations for the
interphase diffusion take the form

(17)

where dα(…)/dt = ∂(…)/∂t + uα · ∇(…) is the substan-
tial derivative along the trajectory of the center of mass

n j( )n k( )

n2� jk( )

----------------- u j( ) u k( )–( )
j

∑ kT k( )∇ Tln– d k( )=

≡ 1
p
--- ρ k( )F k( )– ∇ p k( ) C k( ) ρ j( )F j( )– ∇ p j( )+( )

j

∑–+
⎩ ⎭
⎨ ⎬
⎧ ⎫

k 1 2 …, ,=( ),

ρ k( )
du
dt
------ ∇ p k( )– ρ k( )F k( )+=

+ kBT
n j( )n k( )

n� jk( )
---------------- u j( ) u k( )–( )

j

∑ kBkT k( )n∇T .–

p k( )k∑
n k( )k∑

ρ k( )k∑

Rαβ uβ uα–( )
β
∑ pkTα

∇T
T

--------–

=  dα ρ̃αKα– sα∇ pα Cα ρ̃βKβ– sβ∇ pβ+( )
β
∑–+≡

≡ ραsα
dαuα

dt
----------- sα∇p ραsαFα– ∇ Pα⋅–+

+
1
2
--- σαβ uα uβ–( ) α 1 2 …, ,=( ),

β
∑

of phase α contained inside the macrovolume element
δ� of a multiphase medium; Pα is the partial viscous
stress tensor; Rαβ is the coefficient of interphase friction
for phases α and β (since the coefficient Rαβ reflects the
interaction between two phase continua, it is often con-
venient to write in a symmetric form, Rαβ = ,
where the parameters θαβ do not depend, at least
roughly, on the mixture proportions), Rαβ = Rβα;17 Fα is
the external bulk force per unit mass of phase α;

(18)

is the generalized thermodynamic force coupled with
the diffusion flux Jα; the quantities dα also have the
meaning of generalized thermodynamic forces that
cause the relative motion of the phases (  = 0);

kTα is the thermophoretic ratio, with  = 0.
A number of theoretical formulas were suggested in the
literature (see, e.g., Soo et al., 1960; Mednikov, 1981)
to determine the thermophoretic force. It should be
noted, however, that the thermophoresis-related force
may be disregarded for disperse particles whose sizes
are generally much smaller than the temperature non-
uniformity scale length in the disk. The last term on the

right-hand side of Eq. (17), ,

describes the change in the momentum of phase α via
phase transitions (recall that wαβ = uα – uβ). In the case
of a two-phase gas–dust disk system under consider-
ation, this term take into account the loss of momentum
by the dust-phase particles through the mass transfor-
mation of some of them to the gas phase during evapo-
ration or the acquisition of additional momentum by the
disperse phase through the formation (from the gas) of
new solid particles during condensation. Nevertheless,
below we will also disregard this term in most cases,
since it is almost always much smaller than the Stokes
force of friction, Ffric, α =  arising from
phase viscosity effects (see, e.g., Nigmatulin, 1987)
and is exactly equal to zero in the absence of phase tran-
sitions. It is important to emphasize once again that, in
contrast to the classical inertia-free Stefan–Maxwell
relations for the relative velocities of the components

17A more detailed analysis of the interphase interaction shows that
large gradients in macroscopic parameters, the rotation of solid
particles, nonstationary establishment of the velocity profile near
the particles, the deformation of disperse particles, and some
other effects can give rise to additional forces on the left-hand
side of Eqs. (17). Apart from the Stokes force of friction, the Saf-
man force (related to the nonuniformity of the carrier-gas velocity
profile, the “hereditary” Basset force (which takes into account
the prehistory of the motion on the behavior of disperse parti-
cles), and the Magnus or Zhukowski force (the force of additional
action on rotating disperse particles due to the gradients in the
mean velocity field of the carrier phase), etc. can be such forces.

ρ̃αρ̃βθαβ

ρ̃αKα ρ̃α
dαuα

dt
-----------– ρ̃αFα ∇ Pα

1
2
--- σαβwαβ

β
∑–⋅+ +≡

dαα∑
kTαα∑

1
2
--- wαβ να ρ, ξρρ 1=

r∑β∑

Rαβwαββ∑
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w(jk) = u(j) – u(k), the interphase diffusion laws described
by the generalized equations (17) incorporate the iner-
tia of the relative phase motion.

For a two-phase gas–dust disk medium, Eqs. (17)
take the form of equations of motion for gas and dust18 

(17*)

where Fd = Fg ≡ g(x, t) is the bulk force per unit mass,
which is generally related to both the gravitational
attraction by the star and the gravitational attraction by
the gas–dust cloud itself.

The sought-for diffusion relation for the relative
velocity vector of the dust and the gas w ≡ (ud – ug) can
be derived from the terms of Eqs. (17*) that describe
the action of friction if we divide each of them by the
corresponding quantity sαρα, subtract one from the
other, and separate out the term with w. Writing the true
velocities of the phases as ud = (Cgw + u) and ug =
(−Cdw + u) and assuming that ρd � ρg, we obtain a
defining relation for w (an analog of the Darcy law for
filtration),

(19)

which is below considered as the main equation in
modeling the phase diffusion in the disk. Note that the
gravitational forces after this subtraction canceled out,
but their action on the motion of the gas–dust medium
manifests itself through a pressure gradient (see, e.g.,
Eqs. (192) and (194)). In writing (19), we made no dis-
tinction between the substantial derivatives for the indi-
vidual phases and the system as a whole; i.e., we
assumed that dd/dt ≅ dg/dt ≅ d/dt, which is valid in the

18Note that the general forms of the equations of motion and the
continuity equations in our paper and those of various authors
who studied the gas suspensions in accretion disks are identical.
The only difference is the presence of the term –s∇p in the equa-
tion of motion (17*) for gas and the absence of the term s∇p in
the equation of motion (17*) for dust. Their appearance in contin-
uum heterogeneous mechanics is eventually related to allowance
for the effect of associated masses (due to the accelerated motion
of the solid particles relative to the carrier gas, when disturbances
of the order of the particle size emerge in the latter) and the buoy-
ant force, which are often much smaller than the other terms in
the equations of motion at large ρd/ρg (typical of gas flows with
solid particles) (see Nigmatulin, 1978). At the same time, since
these forces are proportional not only to the gas density, but also
to the local acceleration of the medium or the difference between
the local accelerations of the gas medium and the solid particles,
the situations where these additional terms of Eqs. (17*) will be
comparable to the aerodynamic Stokes force are quite possible.

Rgdw 1 s–( )sρdρgθdgw≡ ρg 1 s–( )
dgug

dt
----------=

+ 1 s–( )∇p ρg 1 s–( )g– ∇– Pg⋅

Rdgw– ρds
ddud

dt
---------- s∇p ρdsg,–+=⎩

⎪
⎪
⎨
⎪
⎪
⎧

ρ
ρ̃dρ̃g

-----------Rdgw ρθgdw≡
dgug

dt
----------

ddud

dt
----------–

ρd ρg–
ρgρd

----------------∇p+=

–
1
ρ̃g

-----∇ Pg⋅ dw
dt
-------–

1
ρg
-----∇p,+≅

mechanics of mixtures only in the so-called diffusion
approximation. In general, i.e., when the acceleration
of the diffusion flows relative to the center of mass is
taken into account, the following exact transformation
should be used:

(20)

where �(w2) ≡ Cg(w · ∇)Cgw – Cd(w · ∇)Cdw is a qua-
dratic (in w) function; the latter may often be omitted
(see Youdin and Goodman, 2004), in particular, for a
fine passive admixture, since |w | is small for them. The
defining diffusion relation for the relative phase veloc-
ity vector then takes a more complex form:

(19*)

The coefficient of resistance. The coefficient of
friction Rdg between gas and dust continua is defined in
the literature by various formulas, depending on the

characteristic diameter  of the disperse-phase parti-
cles (see, e.g., Sternin et al., 1980; Shraiber et al.,
1987). If the characteristic diameter of spherical solid

particles  � λg, where λg is the mean free path of
molecules in the gas phase, then Rdg is given by the
Epstein formula (Epstein, 1924). For course spherical
condensates with diameters larger than the mean free
path of gas molecules, the coefficient of resistance is
defined by the Stokes law (Stokes, 1851). Thus, for the
coefficients of resistance Rdg (or θdg) of a smooth spher-
ical particle, we have (see, e.g., Weidenschilling, 1977;
Garaud et al., 2005),

(21)

ddud

dt
----------

dgug

dt
----------– dw

dt
------- wd ∇⋅( )ud wg ∇⋅( )ug–+=

=  dw
dt
------- w ∇⋅( )u Cg w ∇⋅( )Cgw+ +

– Cd w ∇⋅( )Cdw

=  
dw
dt
------- w ∇⋅( )u � w2( )+ + dw

dt
------- w ∇⋅( )u,+≈

ρθgdw dw
dt
-------– w ∇⋅( )u– Cg w ∇⋅( )Cgw–≅

+ Cd w ∇⋅( )Cdw
∇p
ρg
-------.+

d̃d

d̃d

Rdg

2ρ̃dρ̃gcsg

d̃dρd

---------------------,

when d̃d � λg Epstein regime( )

2ρ̃dρ̃g

d̃dρd

--------------CD Red( ) w ,

when d̃d � λg Stokes regime( ),⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

=
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or

(21*)

Here, csg is the speed of sound in the gas (see Eq. (57)

below); Red = |w |/νg is the Reynolds number for the
dust; νg is the coefficient of molecular kinematic vis-
cosity for the gas component of the mixture, νg =
λgcg/2; CD(Red) is the coefficient of aerodynamic resis-
tance (the so-called standard resistance curve), which
has a fairly complex form. A considerable number of
formulas that fit this curve are known in the literature
(see, e.g., Schlichting, 1974; Sternin et al., 1980; Med-
nikov, 1981). In particular, the following expression
gained wide acceptance in astrophysics (Whipple,
1972):

(22)

In our view, the following trinomial formula is no less
convenient:

(22*)

its advantage is that it is applicable over a wide Red
range.

It should be noted that, in general, the conditions for
the flow around particles in actual multiphase flows dif-
fer significantly from the idealized conditions in which
the standard curve is applicable. The particles in a gas–
dust cloud generally have an irregular shape and a
rough surface and move nonuniformly in a turbulized
flow of rarefied and compressible gas. Of course, each
of these factors changes (sometimes significantly) the
conditions for the flow around a particle in a disk and
the force of aerodynamic resistance. Let us briefly con-
sider their effect that, as a rule, is disregarded in astro-
physical literature.

(1) It is customary to characterize the degree of
deviation of the particle shape from a sphere in hetero-
geneous mechanics by the shape factor β (β ≥ 1), the
ratio of the surface area of an actual particle to the sur-
face area of a sphere of the same volume. Gorbis (1970)
suggested formulas for calculating the coefficients of
aerodynamic resistance CD(Red, β), which have higher
values than those of the standard curve for essentially
nonisometric dust particle shapes.

(2) Sternin et al. (1980) established that the coeffi-
cient of resistance CD(Red) for particles with apprecia-

θdg

2csg

d̃dρd

-----------, when d̃d � λg

2

d̃dρd

-----------CD Red( ) w , when d̃d � λg.
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

d̃d

CD Red( )

9Red
1– , Red 1≤

9Red
0.6– , 1 Red 800≤ ≤

0.165, Red 800.≥⎩
⎪
⎨
⎪
⎧

=

CD Red( ) 9Red
1– 1 0.179Red

1/2 0.013Red+ +( ),=

0.1 Red 103< <( );

ble roughness increases (compared to the standard
curve) if the latter is comparable to the thickness of the
boundary layer.

(3) Flow turbulization also affects significantly
CD(Red). As was pointed out by Sternin and Shraiber
(1994), according to the data of various authors, for
example, for 20 < Red < 100, CD varies within the range
(0.01–3)  (in what follows,  corresponds to the
standard curve). It is important to note that the effect of
turbulence decreases with decreasing Reynolds number
Red. For comparatively small Red, the Lopez–Dackler
formulas (see, e.g., Sternin et al., 1980) can be used:

where ε is the relative turbulence level, i.e., the ratio of
the root-mean-square pulsation velocity to the averaged
sliding velocity;  = min{0.9Recrit, 700}; Recrit is the
critical Reynolds number; lnRecrit = 5.477–15.8ε (ε ≤
0.15); lnRecrit = 3.371–1.75ε (ε > 0.15).

(4) The onflow compressibility and rarefaction
affect significantly the aerodynamic resistance of the
particles. The role of these factors is determined prima-
rily by the Mach, Ma = |ug |/csg, and Knudsen, Kn, num-
bers. The compressibility of the carrier gas plays a sig-
nificant role in a high-velocity flow of gas suspension in
a disk. From the numerous generalized relations avail-
able in the literature, we give the following formula
(see, e.g., Sternin et al., 1980):

(22**)

where Red < 100 and Ma < 2. Here, the first two factors
in the numerator correspond to the standard curve, the
third factor takes into account the compressibility
effect, and the denominator take into account the rar-
efaction effect.

Hunter et al. (1981) gave the following relation for
Red < 103:

where Td is the dust particle temperature.

CD* CD*

CD Red( )

60.75ε1/3Red
1– ,

Red 50, 0.05 ε 0.5< < <

0.0498 1 150/Red+( )1.565 1.5ε,+

50 Red Red*, 0.07 ε 0.5,< < < <⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Red*

CD Red( ) 9Red
1– 1 0.179Red

1/2 0.013Red+ +( )=

×
1 0.427Ma 4.63–– 3Red

0.88––( )exp+[ ]
1 Red

1– Ma 3.82 1.28 1.25Ma 1– Red–( )exp+[ ]+
---------------------------------------------------------------------------------------------------------------,

CD Red( ) CD* 2–( )=

× 3.07γ 1/2 Ma
Red
--------

1 Red 12/28 0.584Red+( )+
1 11.28Red+

------------------------------------------------------------------–exp

+
1

γ 1/2Ma
---------------- 5.6

Ma 1+
----------------- 1.7

Td

T
-----⎝ ⎠

⎛ ⎞
1/2

+
Red

2Ma
-----------–⎝ ⎠

⎛ ⎞exp 2,+
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(5) At a reduced gas pressure19 in the disk, the gas
component of the medium can slide over the surface of
a solid particle, which also causes the coefficient of
aerodynamic resistance to decrease. The rarefaction of
the medium is characterized by the Knudsen number,

Kn = λg/ . Four Kn ranges are usually distinguished:
Knudsen flow (Kn > 10), transition regime (10 > Kn >
0.25), sliding flow (0.25 > Kn > 0.01), and continuum
flow (there is no rarefaction effect, Kn < 0.01). For the
first three ranges, the coefficient of aerodynamic resis-
tance may be represented as CD = ϕ , where the coef-
ficient ϕ is defined by the well-known Millikan formula
(see, e.g., Fuks, 1955)

As the rarefaction increases, the effect of compressibil-
ity on the coefficient of resistance degenerates. All the
above improvements of formula (22) can be easily
taken into account when numerically simulating the
structure of a protoplanetary gas–dust disk, for exam-
ple, at the subdisk formation stage.

Returning to Eq. (21*) for the coefficient θdg(Red),
note that Eqs. (21*) are convenient only for monodis-
perse dust with a given characteristic linear diameter of

the inclusions , since in this case θdg does not depend
on the volume concentration of the disperse phase s and
the total number density of the solid particles Nd. How-
ever, when the coagulation processes in the gas–dust
protoplanetary cloud are taken into account, i.e., given
that the dust is multifractional, it is appropriate to
rewrite (21*) in a form that explicitly depends on the
parameters s and Nd, which are defined by the Smolu-
chowski equation. When using formula (16), Eq. (21*)
for θdg(s, Nd, Red) transforms to

(23)

Allowance for Dust Multifractionality

Let us now consider in more detail the technique of
calculating Nd(x, t) when the dust multifractionality of
the system is taken into account. The actual protoplan-
etary cloud is polydisperse; i.e., condensed particles of
various sizes dd, k are present in the macrovolume ele-
ment δ�. This factor can be taken into account by
breaking down the dust component into a finite number
of fractions each of which is generally characterized by

19For example, Wasson (1985) obtained the following pressure esti-
mates in the midplane of the circumsolar disk: 2 × 10–5–10–1 g/cm3

at r = 1 AU and 5 × 10–7–2 × 10–6 g/cm3 at r = 3 AU.

d̃d

CD*

ϕ 1 Kn 1.55 0.471 0.596/Kn–( )exp+[ ]+{ } 1– .=

d̃d

θdg θdg s Nd Red, ,( )=

=  

4/3π( )1/3ρd
1– s 1/3– csgNd

1/3, when d̃d � λg

4/3π( )1/3ρd
1– s 1/3– Nd

1/3CD Red( ) w ,

when d̃d � λg.⎩
⎪
⎨
⎪
⎧

its own thermohydrodynamic parameters; i.e., instead
of one disperse phase, we must consider m phases
(where m is the number of fractions) each of which has
its own macroparameters,

(24)

where ud, k(x, t) is the hydrodynamic velocity of the
fraction-k solid particles.

Next, we assume that the material of different frac-
tions is the same (ρd, 1 = ρd, 2 = … = ρd, m = ρd = const) and
that the solid-phase condensates of fraction 1 constitute
the group of the smallest (primary) particles, those of
fraction 2 constitute the group of double particles, etc.
up to the maximum size. To simplify our analysis of the
coagulation process in an (m + 1)-phase polydisperse
flow, we also assume that all solid particles are spheri-
cal or nearly spherical with the Feret diameter dd, k.
Since the size of chemically identical solid particles
after their adhesion increases as the cubic root of the
number of its constituent primary condensates (dd, k =

dd, 1 ), the volume concentration of the fraction-k
disperse particles is defined by the relation

(25)

where nd, k(x, t) is the number density of the fraction-k
particles (their number in a unit total gas-suspension
volume); U1 = (π/6)d3 and d ≡ dd, 1 are, respectively, the
volume and diameter of one smallest particle. The vol-
ume content s(x, t), the distributed mass density (x, t),
and the hydrodynamic velocity ud(x, t) of the entire dust
continuum can then be expressed as

(26)

In a disperse mixture in which the macroscopic
velocities of the fractions differ, i.e., fractions j and k
move relative to one another with the velocity ud, j – ud, k
(j, k = 1, …, m), there will be collisions between parti-
cles of different fractions, which will lead to the mass,
momentum, and energy transfer between the fractions.
Allowance for this fact, which is important at the final
subdisk formation stage (when the fraction of particles
“reflected” from the subdisk with a mean or macro-
scopic velocity different from that of the “incident” par-
ticles can appear in the flow) and at the planetesimal
formation stage (after the subdisk disintegration),
severely complicates the problem of modeling the evo-
lution of a protoplanetary gas–dust disk (see

dd k, , nd k, , sd k, nd k, π/6( )dd k,
3 ,=

ρd k, , ud k, … k 1 … m, ,=( ),

k3

sd k, nd k, π/6( )dd k,
3 U1knd k, ,= =

ρ̃d

s sd k,

k 1=

m

∑≡ U1 knd k, ,
k 1=

m

∑=

ρ̃d ρd sd k, , sud

k 1=

m

∑ sd k, ud k, .
k 1=

m

∑= =
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Kolesnichenko, 2001). In this paper, however, we
assume that the particles of the material (“pseudomole-
cules”) belonging to different dust continua (fractions)
move with the same hydrodynamic velocity, ud, k ≡ ud
(k = 1, …, m).

We have already mentioned above that the fragmen-
tation and coagulation processes are the main size for-
mation mechanisms of large solid particles as they
accumulate in a gas–dust cloud. The fragmentation
mechanism of colliding solid bodies was thoroughly
studied (see, e.g., Sternin and Shraiber, 1994) and can
be taken into account, when necessary; therefore,
below, we will not consider the particle disintegration
in order not to overload the problem of modeling the
disk evolution with details. In this case, the number
density nd, k of fraction k can change only through a
decrease in the number of particles of this fraction as
they combine with other dust particles and through an
increase in the number of particles of this fraction due
to the adhesion of smaller condensates. The system of
kinetic equations that describes the coagulation can
then be written as (Smoluchowski, 1936)

(27)

where (x, t) is the total rate of change in the number
density nd, k(x, t) of fraction-k dust particles via the
coagulation processes; Kkj(dk, dj) is the coagulation
coefficient (kernel) for particles of sizes k and j that
characterizes the coagulation interaction efficiency; it
is defined as the mean number of collisions between
particles of sizes dk and dj in a unit volume per unit time
for a unit number density of one and the other type.
Since such an interaction between two different-size
particles in the flow is complicated by the influence of
the ambient medium, the pattern of interaction in a lam-
inar or turbulent flow, and the force fields (gravitation,
electromagnetic field, molecular interaction), deter-
mining the coagulation kernel is a challenging problem
of its own (see, e.g., Voloshchuk, 1984; Mazin, 1971).
Kolesnichenko (2001) analyzed various coagulation
mechanisms20 for a turbulized gas–dust cloud and pro-
vided the corresponding expressions for the coeffi-
cients Kkj. Given (27), the system of instantaneous

20The coagulation of particles in a gas–dust flow can be caused by
the simultaneous action of various particle collision mechanisms.
These primarily include the gravitational coagulation, electric
coagulation, Brownian coagulation, turbulent coagulation, and
their various combinations like the turbulent–Brownian coagula-
tion of charged and neutral particles, the Brownian coagulation of
charged particles in a gravitational field, etc.

nd k,
1
2
--- K j k j–( )nd j, nd k j–( ),

j 1=

k 1–

∑ Kkjnd k, nd j,

j 1=

m

∑–=

k 1 2 … m, , ,=( ),

°

nd k,
°

equations for the conservation of the number of frac-
tion-k dust particles takes the form

(28)

The balance equation for the total number  =

 of disperse particles in a unit total gas-suspen-
sion volume determined only by the coagulation pro-
cesses (see (15)) follows from (28):

(29)

the right-hand side of Eq. (29) is equal to half the sec-
ond term on the right-hand side of Eq. (28), since the
total number of dust particles in a unit volume does not
increase during the coagulation. In the spatially uni-
form case where all coagulation constants are approxi-

mately equal, Kkj = K, Eq. (29) ∂ ∂t = –(K/2)

(with the initial condition (0) =  has a simple

solution, (t) = /(1 + qt), where q = K /2,
which allows the coagulation constant K to be determined
experimentally (from the slope of the straight line).

Given that the total mass of the dust particles during

the coagulation is conserved,  = 0, the
summation of the left- and right-hand sides of the equa-
tions of system (28) over k that were first multiplied by
the mass of an individual fraction-k particle, �d, k =
ρdU1k, leads to Eq. (14*), which allows the total dust
volume concentration s in a two-phase polydisperse
flow to be calculated.

It is also important to keep in mind that the number
of nonlinear differential equations (28) required to
describe the space-time distribution of the entire set of
dust particle sizes in the disk is generally infinite. At the
same time, we have to use a finite (m) number of equa-
tions when numerically simulating the coagulation pro-
cesses based on system (28). Of course, the “loss of
material” is possible in this case, since a number of par-
ticles can coagulate to sizes exceeding the largest size
dd, m taken into account in this approach. Therefore, for
our purposes, a different, integral form of the system of
coagulation equations (28) is preferred.

To obtain this form, we assume that the number of
particles with the volume from U to U + dU located at
time t in a volume element in the vicinity of point x is

∂
∂t
-----nd k, ∇ nd k, ud( )⋅+ nd k,=

=  
1
2
--- K j k j–( )nd j, nd k j–( ),

j 1=

k 1–

∑ nd k, Kkjnd j,

j 1=

m

∑–

k 1 2 … m, , ,=( ).

°

Nd'

nd k,k∑

ρ d
dt
-----

Nd'

ρ
------⎝ ⎠

⎛ ⎞ ∇ Nd' wd( )⋅+ nd k,

k

∑=

=  
1
2
--- Kkjnd k, nd j, ;

j 1=

∑
k 1=

∑–

°

Nd' Nd'
2
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�d k, nd k,k∑ °
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f(U, x, t)dU. By definition, the function f(U, x, t), which
characterizes the particle size spectrum, satisfies the
normalization relation

(30)

Clearly, the formula

(31)

defines the total volume concentration of the dust parti-
cles. Since the volume of the size-k particles is equal to
kU1, the number density nd, k of particles k can be
expressed in terms of f(x, t, U) as

(32)

Using this relation, we can derive the following kinetic
coagulation equation from (28) after the operation
U1  dU:

(33)

which is a generalization of the well-known Muller
equation for describing a coagulating disperse medium
(see, e.g., Voloshchuk, 1984) to the spatially nonuni-
form motions of a gas suspension. Here, K(W, U) is the
symmetric (in arguments) coagulation kernel that
determines the behavior of a dispersed medium in time.
To solve this equation, we must require the satisfaction
of the conditions f(U, x, t)  0 for U  0 and
U  ∞ and specify the initial condition f(U, x, 0) =
f0(U, x) and the boundary conditions.

The kinetic equation (33) is a nonlinear integro-dif-
ferential equation whose solution can generally be
obtained only by numerical methods, since, unfortu-
nately, the terms that describe the convection of dust
particles severely complicate the standard coagulation
equation (see, e.g., Lissauer and Stewart, 1993). Sev-
eral exact analytical solutions of the nonstationary spa-
tially uniform analog of Eq. (33) for some of the struc-
turally simple coagulation kernels (linear in each indi-
vidual argument) based on the Laplace integral
transform are known in the literature (see, e.g.,
Safronov, 1969; Voloshchuk, 1984). Therefore, the fol-
lowing should be noted. The analyses of the coagula-

Nd x t,( ) f U x t, ,( )dU .

0

∞

∫=

s x t,( ) Uf x t U, ,( )dU

0

∞

∫=

nd k, f kU1 x t, ,( )U1.=

∂f U x t, ,( )
∂t

-------------------------- ∇ f U x t, ,( )ud[ ]⋅+

≡ ρ d
dt
----- f U x t, ,( )

ρ
-----------------------⎝ ⎠

⎛ ⎞ ∇ f U x t, ,( )wd[ ]⋅+

=  
1
2
--- f W x t, ,( ) f U W– x t, ,( )K W U W–,( )dW

0

U

∫

– f U x t, ,( ) f W x t, ,( )K W U,( )dW ,

0

∞

∫

tion processes for kernels K(W, U) = Λ0 that do not
depend on the coagulating-particle volumes are cur-
rently most advanced theoretically. The solution of the
coagulation equation with the kernel K(W, U) = Λ1WU
can hardly be considered physically feasible, since it is
not continuous in time (starting from a certain time, the
number of particles in the system becomes negative
(Voloshchuk, 1984). An analytical solution of the kinetic
equation with a kernel proportional to the sum of the coag-
ulating-particle volumes, K(W, U) = Λ2(W + U), was
obtained by Safronov (1969) when studying the evolu-
tion of a protoplanetary gas–dust cloud. However, as
yet no disperse system for which the coagulation
microphysics would exactly lead to kernels of such a
type has been found.

At the same time, when hydrodynamically model-
ing a gas–dust disk, the full knowledge of the particle
size distribution function is often not required, and only
information about the behavior of its first several
moments of type Nd(x, t), s(x, t), and the like in time and
space will suffice. In this case, one of the possible
approximate methods for solving the kinetic coagula-
tion equation, in particular, the method of moments,
can be used. In Appendix A, we illustrate the potential-
ities of this method by solving the kinetic coagulation
equation (33) for the case where the particle size distri-
bution depends on one space coordinate z, which corre-
sponds to steady dust motion when solid particles settle
under gravity to the subdisk.

The Conservation of Total Momentum

In modeling a protoplanetary cloud, we have to
solve the equations of radiation hydrodynamics for
large space-time scales of motion that define the aver-
aged thermohydrodynamic and radiation parameters of
the gas–dust disk medium. When the linear size of the
total volume element δ� is much larger than the radia-
tion mean free path λrad, the radiation energy and pres-
sure cannot be disregarded. It is quite clear that in the
case of local equilibrium between radiation and matter,
where the radiation energy density is Erad = aT4/ρ (per
unit mass) and the radiation pressure is

(34)

we should everywhere add the radiation energy and
pressure to the internal energy E(x, t) and the thermal
pressure p(x, t) in the equations of heterogeneous
mechanics and consider the process of radiative heat
conduction. Here, a = 4σ/c, σ, and c are the radiation
density constant, the Stefan–Boltzmann constant, and
the speed of light, respectively.

The instantaneous equation for the conservation of
total momentum of the gas–dust material can be
derived, for example, by adding the equations of
motion for the individual phases (17*). As a result, the
differential equation for the momentum conservation of

prad
ρErad

3
------------

1
3
---aT4,= =
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the disk medium as a whole (including the radiation
field), which, in contrast to the continuity equation (13),
depends on the relative motion of the phases, can be
written as

(35)

where ∇ · (ab) ≡  is the divergence of

the dyad ab = (akb1) (see Appendix B);
psum(x, t) is the total pressure equal to the sum of the
thermal pressure of the gas–dust mixture and the radia-
tion pressure, psum = p + prad;

(36)

Psum(x, t) is the total viscous stress tensor21 equal to the
sum of the viscous stress tensors for a heterogeneous
mixture, P =  ≅ Pg (since we assumed that
Pd ≅ 0), and the radiative shear stress tensor Prad; Pα is
the viscous stress tensor for phase α, which depends on
the deformation rate tensor determined by the velocity
field of the corresponding phase;

(37)

is the “relative” stress tensor22 that arises from the
dynamical effects of the relative motion of solid parti-
cles and gas (see, e.g., Kolesnichenko and Maksimov,
2001); g(x, t) = –∇Ψ is the vector of acceleration by the
external bulk force (gravity); Ψ(x, t) is the Newtonian
gravitational potential. When the mass of the gas–dust
cloud accounts for a few percent of the mass of the cen-
tral body or, more precisely, when �disk/�� ≤ hdisk/R,
where hdisk and R are the disk half-thickness and radius,

21The viscous stress tensor is a tensor of the second rank or a dyad
(see Appendix B).

22In heterogeneous media, the laws that describe the relative
motion of the phases become more complicated, because this
motion is determined not by the diffusion mechanism (collisions
between molecules during their random motion), but by the inter-
action between the phases as macroscopic systems. These pro-
cesses can be described using forces and a more consistent allow-
ance for the phase inertia. The relative stress tensor in the total
equation of motion for the mixture leads to a cardinal difference
between heterogeneous mechanics and multicomponent mechan-
ics, for which the terms containing quantities of the second order
relative to the diffusion velocities wα may be disregarded (the so-
called diffusion approximation in the mechanics of mixtures.

ρdu
dt
------ ∂ ρu( )

∂t
--------------- ∇ ρuu( )⋅+≡

=  ∇ psum– ∇ Psum*⋅ ρg,+ +

il

∂ akb1( )
∂xk

------------------
l∑k∑
ilikl∑k∑

Psum* Psum Prel+≡ Pg Prad+=

– 1 s–( )ρgwgwg sρdwdwd;–

Pαα∑

Prel ρ̃αwαwα

α
∑–≡

=  1 s–( )ρgwgwg– sρdwdwd–

respectively (see, e.g., Hersant et al., 2004), the dust par-
ticle self-gravity may be ignored; in this case, we have

(38)

where �� is the mass of the central body (star); G is the

gravitational constant; |r | =  is the central

radius vector, r = ; in what follows, the center
of mass of the protostar is taken as the coordinate ori-
gin. In the cases where the self-gravity effects are
important,

(38*)

and the self-gravity potential Ψcr satisfies the Poisson
equation ∇2Ψcr = 4πGρ, where ∇2 = ∇ · ∇ is the Laplace
operator.

The relative stress tensor Prel for a gas–dust disk can
be written in several equivalent forms convenient for
writing the model equations of motion in various coor-
dinate systems. Using (6) and (12), we have

(39)

It is important to note that when the dynamics of a
protoplanetary cloud is modeled, these additional
stresses must be taken into account when fractions of
relatively large solid particles (≥1 mm) are present in it,
since in this case there is a significant velocity differ-
ence between the phases, i.e., the relative velocity of the
phases w can be equal in order of magnitude to the
hydrodynamic velocity of the total continuum u. At the
same time, for very small particles (�1 mm at a Stokes
number Stk � 1; see Eq. (100)), when the particles have
time to react to a change in the parameters of the carrier
medium, the approximation of a passive admixture can
be used23—a two-phase gas–dust flow is approximated
by a flow of a single-phase (generally multicomponent)

23In the other extreme case (at Stk � 1), where the large solid par-
ticles in the disk system do not change their state as the gas
parameters vary, we can also consider a single-phase flow, but
already of pure gas; the inverse effect of the large bodies can be
taken into account by introducing distributed sources of resis-
tance. Finally, when Cd � 1, the presence of rare particles of the
gas–dust mixture does not affect the gas flow parameters and
therefore, the approximation of a single particle can be used;
here, first, the equations of motion for the gas are solved, and
then the particle trajectories and the change in their state along
the trajectories are determined from known gas parameters (see,
e.g., Garaud et al., 2005).

Ψ
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r
-------------, g ∇Ψ–
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r 3
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x1
2 x2
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2+ +

ikxkk∑
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Prel 1 s–( )ρgwgwg– sρdwdwd–≡
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=  sρdCgww–
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medium with certain effective thermophysical proper-
ties (density, gas constant, specific heat, etc.) (see
Kolesnichenko, 2000). Below, we will use mainly the
representation of the tensor Prel via the velocity vector
of the relative phase motion, w ≡ ud – ug.

Since the radiative shear stress tensor Prad is known
(see, e.g., Tassoul, 1979) to be structurally similar to the
viscous stress tensor for material P, we may write24 

(40)

where  is the deformation rate tensor; D = 1/2(∇u +
(∇u)transp) is the deformation tensor; I is a unit vector
(or a unit dyad, I = i1i1 + i2i2 + i3i3); µg(ρ, T) and ξg(ρ, T)
are the molecular coefficients of dynamic and bulk vis-
cosities of the gas, respectively; µrad = 4aT4/15c ρ is
the coefficient of radiative viscosity;  is the total Ros-
seland mean opacity of the medium, which, in turn, also
depends on ρ, s, Nd, T, and the chemical composition of
the gas (see Eqs. (72) and (73)).

The Conservation of Internal Energy

The instantaneous heat influx equation (the equation
of internal energy) for a heterogeneous gas–dust
medium as a whole under the above assumptions can be
written as (Kolesnichenko and Maksimov, 2001)

(41)

Here, Kα ≅ –  + Fα – σαβwαβ is the general-

ized thermodynamic diffusion force that includes the
“inertial term” and the term due to phase transitions
(see (18)); Esum = E + Erad is the total internal energy of
the disk system (matter plus radiation) per unit mass;
E(x, t) ≡  is the internal energy of the mate-
rial;25 eα(x, t), hα(x, t) (=eα + p/ρα) are, respectively, the
partial internal energy and enthalpy (per unit mass) of
the phase-α material; Erad is the radiation energy den-

24If the matter–radiation interaction up to the terms of the lowest
order in |u |/c is taken into account, then the following terms also
enter into the radiative shear stress tensor components (Prad)ik:

−c–2(ui(qrad)k + uk(qrad)i + δikus(qrad)s), where qrad is the radia-
tive heat flux vector defined by Eq. (48) (see, e.g., Hazlehurst and
Sargent, 1959).

25The internal energy of the gas–dust mixture as a whole that we
introduced is its true internal energy, since it does not contain the
contribution from the kinetic energy of the interphase diffusion.

Psum P Prad+( ) 2 µg µrad+( )D≅=

+ ξg 5/3µrad+( ) ∇ u⋅( )I,

D D 1/3I∇– u,⋅=

°

°

D°

κ̃
κ̃

ρ d
dt
----- Esum( ) ∇ qsum psum∇– u⋅ ⋅–=

+ Φu Jα

α
∑ Kα.⋅+

dαuα

dt
----------- 1

2ρ̃α
---------

Cαeαα∑

sity (per unit mass) defined by the Stefan–Boltzmann
law, Erad = aT4/ρ; qsum = q + qrad is the total energy flux
density in the system; qrad is the specific radiatively
transferred energy flux;26 q is the specific energy flux
related to the thermal motion of the particles of the
phase material (i.e., determined by the heat conductiv-
ity) and to the transfer of particle enthalpies by phase
diffusion flows: Φu ≅ Psum : ∇u is the dissipative func-
tion, the rate at which heat is generated by the viscous
friction of the gas in a unit volume per unit time. In
writing (41), we assumed that the thermodynamic func-
tions (internal energy, enthalpy, etc.) are additive in the
masses of the phases in the heterogeneous system,
which is admissible only when the contribution from
the near-surface (Knudsen) layer of solid particles is
disregarded.

Using (17) and (18), the last term in Eq. (41) can be
rewritten as  · Kα =  · (–dα + sα∇p),
where dg = –dd = Rgdw (without thermophoresis). For
the additional source of heat associated with the dissi-
pation of kinetic diffusion energy, we will then have (an
analog of the Joule heating for plasma)

since s2 � 1. Here, σ = (ρd – ρg)/ρ is the relative excess
of the dust particle density above the gas density; for
small solid particles, sσ � 1 and the last term in this
relation may be neglected.

It is important to note that the heat influx equation (41)
contains the true internal energy of the gas–dust
medium E per unit mass, which was determined by sub-
tracting the potential and kinetic energies of all phases
from the total energy Utot of the material of the disk sys-
tem (Kolesnichenko and Maksimov, 2001),

(42)

At the same time, if the internal energy of the gas–dust
system is defined by the relation E* = Utot – Ψ – 1/2|u |2,
then it will also include the macroscopic kinetic energy
of the phases in the center-of-mass system, i.e., E* =
E + CdCg|w |2/2. If we now write Eq. (41) via the inter-

26The radiative energy transfer should always be taken into
account, since it is large even at a low radiation energy density
(due to the high photon velocity).

Jαα∑ wαα∑
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α
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nal energy E* redefined in this way, then it will take a
usual form, i.e., it will not contain the terms Rgd|w |2 =
sσw · ∇p. Indeed, using (19*) and the vector transfor-
mation (a · (b · ∇)c = ab : ∇c), we can write the balance
equation for the kinetic energy of the interphase diffu-
sion as

(43)

since, to the terms of the second order relative w, we
have

Still, the quantity E in the heat influx equation (41)
probably more deserves the name “internal energy”
than E*, since the internal energy must contain only the
contribution from the thermal motion and the short-
range molecular interactions and no macroscopic terms
(see de Groot and Mazur, 1964).

Other forms of the energy equation for a gas sus-
pension. Below, we will need the energy equations
written in several other forms. Let us introduce the total
enthalpy Hsum = H + Hrad of the matter and radiation in
the disk, where

(44)

Using Eq. (42) and the transformation ρdEsum/dt +
psum∇ · u = ρdHsum/dt – dpsum/dt, which is a corollary of
definitions (44) and the mixture continuity equation (13),
we will then obtain

(45)

This equation corresponds to the first law of thermody-
namics (i.e., the law of conservation of thermal energy).

Let us now rewrite Eq. (45) in the variables T(x, t)
and p(x, t). For most of the purposes pertaining to our
problem of modeling the evolution of an accretion disk,
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∑≡ Cα eα p/ρα+( )

α
∑ E p/ρ+= =

Hrad Erad prad/ρ+ 4/3aT4/ρ= =

Hsum Esum psum/ρ.+=⎩
⎪
⎪
⎨
⎪
⎪
⎧

ρ
dHsum

dt
--------------

d psum

dt
------------- ∇– qsum⋅=

+ Φu Rgd w 2 sσw–+ ∇p.⋅

it will suffice to approximate the partial enthalpies of
the gas and dust (per unit mass) using the expressions

hg = cPgT + , and hd = cPdT + , where  is the
enthalpy of phase α at zero temperature (the so-called
heat of formation) and cPα is the specific heat (at con-
stant pressure) of phase α. Below, the thermophysical

quantities cPα and  are assumed to be the constants
that approximate the actual disk specific heats cPα(T)

and partial heats of formation (T) in a limited tem-
perature range. We can then write

(46)

where cP =  = ρ–1{ρg(1 – s)cPg + sρdcd} is the

total specific heat of the “gas–solid particles” system at
constant pressure. Using now Eqs. (46), along with
Eqs. (9), (12), and (13), we obtain

(47)

where the relation qρ ≡  =  + να, ρ

introduces the so-called heat of reaction ρ, which is
equal to the difference between the products of the par-
tial enthalpies of the reaction products by the corre-
sponding stoichiometric coefficients and the analogous

sum for the reactants (να, ρ ≡ να(k), ρ); note

that  =  can be interpreted as the heat of

phase transition ρ at zero temperature. The last term on
the right-hand side of Eq. (47) represents the effect of
the so-called “diffusing specific heats,” which is negli-
gible and, hence, is commonly ignored.

According to Kolesnichenko and Maksimov (2001),

the total energy flux Jq ≡ q –  related to the

hg
0 hg

0 hα
0
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0

hα
0

H cPT Cαhα
0 ,
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--------

α
∑ ρ hα

dCα

dt
---------

α
∑+≡

=  ρcP
dT
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------ hα ∇– Jα σαβ+⋅( )

α
∑+

=  ρcP
dT
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α
∑⋅–

+ qρξρ ∇T cPαJα
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∑ ,⋅+
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thermal motion of particles in a heterogeneous contin-
uum27 can be written in the standard form28 

or

(48)

which generalizes the analogous relation for multicom-
ponent homogeneous mixtures (see Hirschfelder et al.,
1954) to heterogeneous media. In a similar way, by
excluding the disk regions close to the surface of the
protostar, we can write the law of heat conduction for
the radiative heat flux vector,

(48*)

Here, χg is the molecular coefficient of heat conductiv-
ity for the gas, and χrad = 4acT3/(3 ρ) is the coefficient
of radiative (nonlinear) heat conductivity, which
strongly depends on the temperature and density of the
material (see Eq. (71)).

Substituting (47), (48), and (48*) in Eq. (44) ulti-
mately yields

(49)

where we use the notation χsum = χg + χrad and cP, sum =
cP + 16aT3/3ρ.

Finally, let us derive the balance equation for the

specific entropy S =  of the total continuum

modeling the gas–dust disk medium as a whole, which
is commonly called the general heat transfer equation
(here, Sα is the entropy per unit mass of phase α). For
this purpose, we will use the fundamental Gibbs rela-
tion (see, e.g., Prigogine and Defay, 1954) for a single-
temperature heterogeneous multicomponent radiative
continuum in the single-pressure approximation. Being
written along the center-of-mass trajectory of the vol-

27Recall that the heat flux for diffusing mixtures can be defined in
various ways, with the specific form of the expression for the rate
of entropy production σ(S) corresponding to each definition of the
heat flux; the choice in each specific case depends on the conve-
nience of considering the problem.

28In (48), we disregarded the thermophoretic effect, kPα = 0.

Jq q hαJα

α
∑– q ρCgCd hd hg–( )w–≡ ≡ χg∇T ,–=

q hαJα

α
∑ χg∇T ,–=

qrad χrad∇T .–=

κ̃

ρcP sum,
dT
dt
------

d pg

dt
-------- ∇ χsum∇T( ) 4 prad∇– u⋅ ⋅+=

+ Φu Rgdw2 sσw–+ ∇ pg qρξρ,
ρ 1=

r

∑–⋅

CαSαα∑

ume element δ�, it takes the form (Kolesnichenko and
Maksimov, 2001)

(50)

where µα(k) is the chemical potential of component k in
phase α. Using Eqs. (9), (13), and (41), we can write the
Gibbs relation (50) in the form of a balance equation,

(51)

where

(52)

is the energy dissipation in irreversible processes,
which is a local measure of nonequilibrium of the sys-

tem; Gα =  = eα + p/ρα – TSα is the Gibbs
free energy of an elementary macroparticle of phase α;

(53)

is the chemical affinity of reaction ρ that generally pro-
ceeds between components in different phases.

Note that the specific representation of the rate of
entropy production (Tσ(S)) as a bilinear form is used in
nonequilibrium thermodynamics to establish the defin-
ing relations that linearly relate the thermodynamic
fluxes and the conjugate thermodynamic forces in the irre-
versible process under consideration by the Onsager
method. In particular, the generalized Stefan-Maxwell
relations (17) for heterogeneous media were derived by
Kolesnichenko and Maximov (2001) precisely in this way.

The Thermodynamic Equation of State

Below, we will use a baroclinic equation of state for
a mixture of perfect gases as the thermal state of the
multicomponent gas phase of the disk (the equation for
pressure):

(54)

T
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dt
------------

dEsum
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d
dt
----- 1

ρ
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∑
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where �g = kB /ρg = kB/�g; �g is the mean

molecular mass of the gas particles, which below is
assumed to be constant.

Assuming that the partial pressures in the phases are
equal, pg = pd = p, let us write the equation of state for
the disk material as

(55)

(in the case considered here, � is not a constant). The
approximate equality in Eq. (55) holds for a gas suspen-
sion with a low volume concentration of the condensed
phase (i.e., when s � 1, which is assumed in this paper;
nevertheless, the dynamical effect of solid particles on
the gas flow may turn out to be significant even in this
case due to the enormous influence of the gravitational
force). Thus, the gas–dust disk medium as a whole may
be treated as a perfect gas with the adiabatic index γ and
the speed of sound cs defined by the relations

(56)

(57)

where γg and csg are the adiabatic index and the isother-
mal speed of sound in a pure gas. For a gas of solar
composition, with hydrogen and helium comprising
98% of it, the adiabatic index is γg = 1.45 and the mean
molecular mass is �g = 2.39.

Radiative Processes

Radiative heat transfer has a decisive effect on the
state and motion of a turbulized high-temperature pro-
toplanetary cloud. Meanwhile, the interaction between
radiative heat transfer and turbulence has been studied
inadequately; as a result, it has been disregarded in the
literature and in modeling the evolution of a gas–dust
disk until recently. Since this interaction can actually be
significant (see, e.g., Ievlev, 1975), below we attempt to
take it into account (at least in part) using the approach
being developed here. Therefore, let us consider in more
detail some of the basic concepts of the theory of radia-
tive transfer that we will need for the above purposes.

ng k( )k∑

p ρ�T , � Cg s,( ) �gρg/ρ= =

=  �gCg/ 1 s–( ) �gCg≅

γ
cP

cP �–
----------------

ρgcPg sρdcPd+

ρg cPg �g–( ) sρdcPd+
----------------------------------------------------,≅≡

1 γ γ g

cPg

cPg �g–
--------------------,≡≤ ≤

cs
2 ∂p

∂ρ
------⎝ ⎠

⎛ ⎞
S

≡ γ p
ρ
--- γ�T csg

2 γ ρg

γ gρ
--------,≅= =

cs csg
∂p
∂ρg
--------⎝ ⎠

⎛ ⎞
Sg

≡< γ g�gT( )1/2
,=

The emission and absorption of photons29 are
described by a radiative transfer equation that for a gas–
dust medium in local equilibrium (at any point in space
and at any instant in time) takes the form

(58)

Here, Iν ≡ Iν(x, W, t) is the spectral intensity of the radi-
ation defined in such a way that IνdνdW describes the
energy of the photons in the frequency range from ν to
ν + dν that cross a unit surface element with normal W
within the solid angle dΩ oriented along W per unit
time; Bν(T) ≡ (2hν3/c2)[exp(hν/kBT) – 1]–1 is the Planck
function; h is the Planck constant; κν(x, t) is the total
spectral attenuation coefficient (opacity) expressed in
terms of the cross-sections for the elementary physical
processes in the gas–dust mixture as

(59)

σ(k)(ν) ≡ σa(k)(ν)[1 – exp(hν/kBT)] +  is the cross-
section for the attenuation of radiation at frequency ν
per one gas molecule of type k, which is equal to the
photon absorption cross-section (corrected for the
induced emission of radiation) plus the effective scat-
tering cross-section; Qd = Qds + Qda; Qds and Qda are,
respectively, the efficiency factors for the scattering and
absorption of light by dust particles (the dimensionless
quantities calculated using the Mie theory); m(ν) is the
complex refractive index of the grain material. The fol-
lowing moments used here are related to the function Iν:

, (60)

the spectral energy density (per unit mass); and

, (61)

the spectral energy density along W. The total energy
density and flux can be obtained by integrating the cor-

29The scattering is known to have no direct effect on the thermal
regime of the medium. That is why, in general, the scattering of
radiation is disregarded in the problems of radiation hydrody-
namics (which we will do below), and only the true attenuation
coefficient κν and the true source function of the radiation Bν
(without scattering) are considered.

1
c
---

∂Iν

∂t
------- W ∇Iν⋅+ ρκν Bν Iν–( ).=

ρκν 1 s–( ) ng k( )σ k( ) ν( )
k

∑=

+ Nd
πd̃d

2

4
--------Qd m ν( ) d̃d,( );

σs k( )
eff

Erad ν, x t,( ) 1
cρ
------ Iν x W t, ,( )dW

4π
∫≡

qrad ν, x t,( ) Iν x W t, ,( )WdW
4π
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responding monochromatic quantities over the fre-
quency,

(62)

Equation (58) written along the direction of propa-
gation of the radiation takes a simpler form,

(63)

Here, l is the coordinate along the ray; below, we will
omit the term c–1∂Iν/∂t in Eq. (58), since the character-
istic time scales for the motion of a gas–dust medium
are much longer than l*/c, where l* is the ray length. If
the optical depth of the layer of the gas–dust medium
(with the ray length l) along the direction of propaga-
tion of the radiation is defined by

(64)

then Eq. (63) can be easily integrated to give the follow-
ing expression for the intensity of the radiation from a
region with a total optical depth τν:

(65)

where Iν(0) is the integration constant; the latter has the
meaning of the radiation intensity at some point on the
ray at which we set the coordinate l equal to zero, l = 0.
When removing the point l = 0 to a great distance, it fol-
lows from Eq. (65) that

(66)

Ideally, Eqs. (65) and (66) allow the intensity Iν(x, W, t)
at various points and in various directions to be found
for known optical properties of the medium (i.e., the
distribution κν(x, t) and boundary conditions in the
midplane of the disk; the radiative heat flux distribution
qrad(x, t) can then be calculated using Eqs. (61) and (62).

At the same time, the heat influx equations (41) and
(45) include the divergence of the radiation flux ∇ · qrad.
For a known Iν distribution, this quantity can often be
found without calculating qrad from (62). Integrating

Erad x t,( ) Erad ν, x t,( )dν,

ν 0=

∞

∫≡

qrad x t,( ) qrad ν, x t,( )dν.

ν 0=

∞
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dIν

dl
------- ρκν Bν Iν–( ).=

τν ρκνdl,

0

l

∫=

Iν τν( ) Iν 0( ) τν–( )exp=

+ Bν τν1( ) τν τν1–( )–[ ]dτν1,exp

τν1 0=

τν

∫

Iν Bν l1( ) ρκν l2( )dl2

l2 l1–

l

∫–
⎝ ⎠
⎜ ⎟
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ρκν l1( )dl1.exp

∞–

l

∫≈

the steady-state equation (58) over the entire frequency
spectrum and over the solid angle Ω yields the follow-
ing general expression for the contribution of the radia-
tion to the thermal balance of the gas–dust disk
medium:

(67)

where the first and second terms correspond, respec-
tively, to the spontaneously emitted and absorbed radi-
ation energies in a unit volume per unit time. The con-
tribution of the radiation to the heat influx equation (41)
is generally difficult to calculate using formula (67).
However, these calculations are simplified significantly
in the following two cases that are important for mod-
eling the various evolutionary stages of a protoplane-
tary gas–dust cloud.

(1) At small optical depths of the gas–dust disk. In
this case, the term with Iν in (67) may be ignored, i.e.,
we can assume in the heat influx equation that

(68)

At high temperatures, this term can be significant even
at a small optical depth of the gas (see Ievlev, 1975), for
example, in the near-surface layer of the disk.

(2) At large optical depths of the gas–dust disk for
the radiation of all energetically significant frequencies ν.
In this case, the diffusion approximation is applicable
for the radiative heat transfer (the approximation of
radiative heat conduction), where the radiation field Iν
is anisotropic only slightly. Multiplying the radiative
transfer equation (58) by W and integrating it by all
angles yields (given that the isotropic term with ρκνBν
does not depend on the direction and, hence, does not
contribute to the integral)

(69)

whence we obtain for the total heat flux

(70)
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4π
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If we retain only the most significant isotropic part for
the slightly anisotropic radiation field on the left-hand
side of Eq. (69), then

(71)

where we introduced the so-called total opacity of the
medium (ρ, s, T, Nd), which is defined as the Rosse-
land mean (for the inverse quantities 1/κν) spectral
opacity (see Pollack et al., 1985),

(72)

(since /dT)dν = 4aT3). The diffusion approx-

imation is valid if the radiation field is isotropic at dis-
tances comparable to or smaller than the photon mean
free path, λν = 1/κν. Note also that Eq. (71) expresses
the radiative flux vector qrad in the inner regions of the
gas–dust disk with an excellent accuracy. However, in
the near-surface layers of the disk, the optical depth is
of the order of or smaller than unity, and the flux is no
longer defined by this local expression. Therefore, we
must use the nonlocal solution (68) of the transfer equa-
tion, which is commonly used to study the stellar atmo-
spheres.

Optical properties of dust grains. It is convenient
to rewrite the spectral opacity of the medium related to
the dust component that is defined by Eq. (59) as

(73)
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π1/362/3

4ρ
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this form explicitly depends on the first moments s and
Nd (see (30) and (31)) of the dust particle size distribu-
tion function f(U, x, t). We are going to calculate the
scattering and absorption of light by spherical solid
bodies with a complex refractive index m using the Mie
theory. Note that, for example, m = ∞ corresponds to an
infinite permittivity, m = 1.33 corresponds to ice parti-
cles (for visual wavelengths), m = 1.33–0.09i corre-
sponds to dirty ice (ice with absorbing admixtures), and
m = 1.27–1.37i corresponds to iron grains.

The size of a spherical solid particle is commonly
expressed in terms of the dimensionless parameter
x(ν) = πdd/λ, where λ = c/ν is the wavelength of light.
For small x, the efficiency factor for the scattering of
light by dust particles Qds is very small; at |mx | � 1, we
have the standard formula for Rayleigh scattering:

(74)

and the absorption efficiency factor in this case is given by

(75)

where Im means that the imaginary part should be
taken.

The Basic System of Equations of Disk Hydrodynamics

Let us summarize (for the convenience of referenc-
ing) the above equations of motion for a two-phase
polydisperse gas–dust medium. These equations (the
reference basis of the model), which include the rela-
tive motion of the phases, coagulation, phase transi-
tions, and various physical–chemical and radiative pro-
cesses, are intended, in particular, for a continuum
description of the space-time evolution of the composi-
tion, dynamics, and thermal regime of a gas–dust cloud
at the final laminar evolutionary stage of the pro-
toplanetary disk (after the decay of turbulent motions30)
in subdisk zones located at various distances from the
proto-Sun (see, e.g., Nakagawa et al., 1986). It is also
important that these equations, which describe the
instantaneous state of a turbulized protoplanetary cloud
at any stage of its evolution, may be considered as the
basic ones in studying the mean motion of the disk sys-
tem when the probability-theoretical averaging of the
stochastic equations of motion has to be performed to

30Turbulence may not decay completely in the disk regions close to
the proto-Sun due to the disturbing effect of magnetic fields, cor-
puscular flows, etc. on the medium.

Qds 8/3x4 m2 1–( )/ m2 2+( ) 2
,=

Qda 4xIm m2 1–( )/ m2 2+( )[ ],–=
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phenomenologically describe the hydrodynamic and
physical–chemical processes. Thus, we have

(76)

The hydrodynamic equations of motion (76) must be
complemented by the corresponding expressions for
the phase transition rates ξρ and the defining relations
for the thermodynamic fluxes,

(77)

as well as by the expressions for the coagulation coeffi-
cients K(W, U) (see Kolesnichenko, 2001) and the coef-
ficients of molecular transfer µg(s, T), ξg(s, T), χg(s, T),
θdg(s, Nd, Re) and radiative heat conductivity χrad(s, Nd, T).
For the above system of equations of two-phase
mechanics (76)–(77), we must specify the initial and
boundary conditions whose choice requires a special
analysis in each specific case, since, in general, not the
disk system as a whole with, say, such natural bound-
aries as the midplane of the disk or its outer boundary,
but its separate regions are modeled.
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It is important to emphasize that the system of equa-
tions (76)–(77), which also describes all particular fea-
tures of the instantaneous state of the stochastic ther-
mohydrodynamic fields of the turbulized flow of a gas–
dust disk medium and their variations under given ini-
tial and boundary conditions, often cannot be solved
using currently available computers. This is because
using numerical methods entails the approximation of
the colossal space-time field of turbulized flow param-
eters by a finite number of mesh points that should be
used to solve the finite-difference approximations of
the differential equations. At present, there is only one
economically justified way out: to solve the hydrody-
namic equations (76)–(77) only for large space-time
scales of motion that determine the averaged structure
parameters of such a stochastic medium and to model
all of the smaller scales phenomenologically. In this
case, stochasticity means the existence of an ensemble
of possible realizations of pulsating gas-suspension
flow fields for which the concept of statistically mean
(mathematical expectation) is defined for all thermohy-
drodynamic parameters.

AVERAGED EQUATIONS OF TWO-PHASE 
MECHANICS TO DESCRIBE THE TURBULENT 

HEAT AND MASS TRANSFER 
IN A GAS–DUST DISK

Before developing the basics of the phenomenolog-
ical theory for the turbulence of multiphase media, as
applied to the problem of modeling the evolution of the
circumsolar protoplanetary disk, note once again the
following: the currently available approaches to
describing multiphase turbulent flows are imperfect
(see, e.g., Shraiber et al., 1987). This is attributable
both to incompleteness of the “classical” theory of tur-
bulence in “ordinary” hydromechanics and to a cardinal
complication of the pattern of turbulent gas flow in the
presence of a disperse admixture. It should be kept in
mind that, being a fundamental problem of heteroge-
neous mechanics, the problem of the inverse effect of
solid particles on the flow parameters has not yet been
solved in full. In particular, this concerns the methods
of allowance for the collective effects related to inter-
particle interactions whose role increases with particle
concentration and size. For example, the mechanism of
intense randomization of the motion of large particles
(the so-called pseudoturbulence), which are weakly
entrained by the turbulent pulsations of the carrier
medium (see Shraiber et al., 1980), is related to inter-
particle collisions. Thus, in view of the above peculiar-
ities of turbulent flows in heterogeneous media, any
theoretical approaches to their description and mathe-
matical models based on them will always be limited,
since they essentially pertain to a strictly definite range
of concentrations and inertias of the disperse phase.
This also applies to all of the currently existing models
for the evolution of a gas–dust disk that cover a rela-
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tively narrow range of problems pertaining to the prob-
lem in question.

Let us now turn to deriving the basic balance equa-
tions of matter, momentum, and energy for a disk gas–
dust turbulized medium intended to formulate and
numerically solve the specific problems of consistently
modeling the thermohydrodynamic parameters of a
protoplanetary cloud at various stages of its evolution
and analyze the physical meaning of the individual
terms in these equations. For the functions in these
equations to be smooth and continuous with continuous
first derivatives, Eqs. (76) must be averaged over time
or an ensemble. The progress made in recent years in
developing and using semiempirical models for turbu-
lence of the first order of closure (the so-called gradient
models) for a homogeneous compressible fluid (see, e.g.,
Taunsend, 1959; Van Migem, 1977; Kolesnichenko and
Marov, 1999) allows us to generalize some of these
models to the shear flows of a two-phase gas–dust mix-
ture that we describe in terms of a single-fluid contin-
uum. We will derive the closing (defining) relations for
the turbulent flows of phase diffusion, heat, and the
Reynolds turbulent stress tensor by a standard method
based on the concept of mixing length.

Choosing the Averaging Operator

Various methods of averaging the fields of physical
quantities are known to be used in the theories of fluid
and gas turbulence. These include, for example, the
time averaging

(78)

where the averaging interval ∆t of the pulsating param-
eter �(x, t) is assumed to be large compared to the char-
acteristic pulsation period and essentially small compared

to the variation period of the averaged field (x, t); the
space averaging through integration over the space vol-
ume; the space-time averaging; the probability-theoret-
ical averaging over the ensemble of possible realiza-
tions; etc. (see, e.g., Monin and Yaglom, 1992). The lat-
ter approach using the concept of an ensemble, i.e., an
infinite set of stochastic hydrodynamic systems of the
same nature that differ by the state of the field of veloc-
ities and/or other thermohydrodynamic parameters of
motion at a given instant in time, is most fundamental.
According to the well-known ergodicity hypothesis, the
time and ensemble averages for a stationary stochastic
process are identical. Without discussing the advan-
tages and shortcomings of various averaging methods,
we only note that the practice of constructing phenom-
enological models to study the turbulent motions shows
that, in general, the methods of introducing the aver-
aged parameters of motion are unimportant for setting

� 1/∆t( ) � x t,( )dt,

t ∆t /2–

t ∆t /2+

∫≡

�

up a complete system of averaged hydrodynamic equa-
tions if we require that the Reynolds postulates be sat-
isfied during any averaging:

(79)

Here, �(x, t) and �(x, t) are pulsating parameters of
the turbulent field of physical parameters for the sys-

tem; (x, t) and (x, t) are their mean values; and a
is a constant. We will also assume that any averaging
operator used in (79) commutes with the differentiation
and integration operators in both space and time31

(80)

In the classical theories of the turbulence of homo-
geneous incompressible fluids that have been devel-
oped to date fairly completely (see, e.g., Monin and
Yaglom, 1992), the averagings for all thermohydrody-
namic parameters without exception are usually intro-
duced in an identical way and, as a rule, without
weighting coefficients. In the time averaging (78) or the
probability-theoretical averaging over the ensemble of
possible realizations

(81)

(where the summation is over the set of realizations,

and the corresponding average field  is defined as the
mathematically expected value of � for an ensemble of
identical systems), the actual value of the parameter �

is represented as the sum of the averaged, , and pul-

sational, �', components: � =  + �' (with  = 0).
In this case, the separation of the actual stochastic
motion into a slowly changing continuous mean motion
and a rapidly oscillating turbulent (irregular, pulsating
about the means) motion depends entirely on the choice
of the space-time region for which the means are
defined. The size of this region fixes the scale of mean

31Some of the relations (79)–(80) after the time (space) averaging
hold only approximately, although they will be the more accurate,

the smaller the change of the mean (x, t) in time (and/or space)
in the domain of integration under consideration.
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motion.32 All vortices of larger sizes contribute to the
averaged motion determined by the averaged thermo-
hydrodynamic parameters. All vortices of smaller sizes
filtered out in the averaging process contribute to the
small-scale turbulent motion determined by the corre-
sponding pulsations of the same structure parameters.

At the same time, this averaging method (the same
for all variables) for a two-phase continuum with a pul-
sating total density ρ leads not only to cumbersome
hydrodynamic equations of mean motion, which is
related to the need for retaining correlations of the type

, , , etc. (which emerge, because the
convective terms of the basic equations for instanta-
neous motion are nonlinear) in their structure, but also
to difficulties in physically interpreting the individual
terms of the averaged equations. Therefore, when
developing our models for a gas-dust disk medium,
apart from the “ordinary” means for some of the pulsat-
ing parameters, we will use below the so-called Favre
(1969) weighted mean averaging for several other
parameters specified, for example, by the relation

(82)

in this case, � = 〈�〉 + �'',  ≠ 0; here, �'' is the cor-
responding turbulent pulsation. Thus, we will use two
symbols to denote the mean quantities: the overbar
denotes the ensemble (time and/or space) averaging,
while the angular brackets denote the weighted mean
averaging. The double prime is used below to denote
the pulsations about the Favre averaged quantity. Note
that the Favre averaging of several pulsating thermohy-
drodynamic parameters for a heterogeneous continuum
simplifies significantly the form and analysis of the
averaged hydrodynamic equations. This is because for

the ordinary averaging, correlations of the type ,

, etc. appear in the averaged equations of
motion in explicit form, while for the Favre averaging,
these correlations are hidden in the corresponding
terms of the equations that have a simpler form.

Below, we list some of the properties of the
weighted mean averaging widely used below that can

32There can be various procedures of deriving the equations for
large-scale turbulence: the “smoothed” thermohydrodynamic
parameters can be introduced, in particular, using the filter func-

tion (x, t) = (x – x')�(x', t)dx' (Leonard, 1974) or when set-
ting up the (momentum, mass, etc.) balance equations for each
cell of the computational mesh (Ievlev, 1970).

� G∫

ρ 'u ' ρ 'u 'u ' ρ 'Cα' u '

�〈 〉 ρ�/ρ≡

=  
1
N
---- ρ p( )� p( )

p 1=

N

∑
N ∞→
lim /

1
N
---- ρ p( )

p 1=

N

∑
N ∞→
lim ;

� ''

ρ '� '

ρ '� 'u '

be easily derived from definition (82) and the Reynolds
relations (80) (see, e.g., Van Migem, 1977):

(83)

where

(84)

is the substantial derivative for the averaged motion.

Averaged Mass Balance Equations

Thus, we will consider the turbulized two-phase
disk medium as a continuum whose instantaneous
motions can be described by the system of hydrody-
namic equations (76) for a random sample of initial and
boundary conditions.33 The macroscopic equations of
turbulent motion for the gas–dust medium can then be
obtained (in a form convenient for the subsequent anal-
ysis) by the stochastic ensemble averaging of Eqs. (76)
using the weighted means for such flow parameters as
the velocity 〈u〉, temperature 〈T〉, mass concentrations
〈Cα〉, etc. However, it is convenient to average the pres-
sure p and density ρ of the medium as well as all
“molecular” thermodynamic fluxes Jα, q, P, and ξρ in
the “ordinary” way, i.e., without using any weighting coef-
ficients.34

The averaged continuity equation. It is easy to see
that the averaged density  and the weighted mean

hydrodynamic velocity 〈u〉 = /  satisfy the continu-
ity equation for mean motion

(85)

Regarding this equation, it is important to empha-
size the following: with known difficulties in modeling

the binary correlations  that appear after the “ordi-
nary” averaging of Eq. (13) for the true density and

33This is possible for the space-time scales enclosed between the
scales of molecular motions and the minimum turbulence scales
(the linear size and lifetime of the smallest vortices), which are
generally several (at least three) orders of magnitude larger than the
scales of molecular motions, i.e., the separation between the mole-
cules, let alone the sizes of the molecules (see, e.g., Van Migem,
1977).

34The Favre averaging of the equations of motion for a two-phase
flow of a gas suspension described in terms of a single-fluid con-
tinuum was probably performed in this paper for the first time.
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hydrodynamic velocity of a two-phase system without
any weight, the preservation of the standard form (85)
for the averaged continuity equation is a convincing
argument for using the weighted mean 〈u〉 for the total
hydrodynamic flow velocity (see Kolesnichenko and
Marov, 1999).

In particular, formula (83) widely used below can be
derived only using Eq. (85) by averaging the operator
relation ρd�/dt = ∂(ρ�)/∂t + ∇ · (ρ�u); as a result, we
have

(83*)

where we denote

(86)

for the second single-point moments of the flow veloc-
ity pulsations and some transferred substance �. Thus,
formula (86) introduces the so-called turbulent flux
related to the transfer of substance � by the turbulent
pulsations of the system’s hydrodynamic velocity.

Below, we give a formula for the turbulent flux 

of the specific volume v(x, t) (≡1/ρ). The flux 
plays an important role in our approach and appears in
many averaged equations of motion, for example, in the
averaged energy equation (see Eq. (126*)). Using the
relation v'' = –ρ'/ρ , which directly follows from the
definition of pulsations v'' (v'' = v – 〈v〉 = 1/ρ – 1/  =
–ρ'/ρ ), we obtain from (86)

(87)

Below, we everywhere assume that only the dust vol-
ume content s and the true gas density ρg fluctuate in the
gas–dust flow (this is a cardinal assumption of the
approach developed here); it then follows from Eq. (2) that

(88)

where we denoted

(89)

for the averaged excess of the dust particle density above
the gas-suspension density and use the expression

(90)

for the averaged mass concentration of the gas phase
(〈Cd〉 ≡ ρd /  ≅ 〈σ〉, 〈Cg〉 + 〈Cd〉 = 1). The following
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expression for the turbulent flux of the specific volume

 in the gas–dust medium follows from (88) in (87):

(91)

It should be noted that Eqs. (88) and (90) for ρ' and
〈Cg〉 (as many similar quantities that will appear below)

are valid only when the inequalities /  � 1
and 〈�''�''〉/〈�〉〈�〉 � 1 hold for any pulsating ther-
modynamic parameters � and � not equal to the gas–
dust flow velocity u; below, we everywhere assume that
the ratios of this kind are small without any special stip-
ulations.

The averaged diffusion equation for the disperse
component of a disk system. Applying the averaging
operator (83*) to the diffusion equation (12) for dis-
perse particles, we obtain the balance equation for the
dust concentration

(92)

Here, 〈Cd〉 = ρd / ;  is the averaged “molecular”
diffusion flux of the dust defined by the relation (see
formula (12))

(93)

(94)

is the so-called turbulent diffusion flux of the disperse

phase (for the gas diffusion flux, we may write  ≡

 = –  = – ).

If we write the turbulent dust flux as  = ρd  +

ρd , then we can obtain the following representation
for the turbulent flux of the specific volume using (91):

(91*)

Below, we will need this expression for .

To close the averaged equation (92), we must have a
defining relation for the turbulent diffusion flux of the

dust,  ≡ 〈 u''〉. There are several approaches to
modeling second-order correlation moments of this
type that differ in complexity (see, e.g., Marov and
Kolesnichenko, 2002). Here, we restrict our analysis to
the simplest gradient relation that we will derive in a
traditional way, by introducing the concept of mixing
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length.35 For this purpose, we will assume that the
transfer of particular flow field characteristics � by the
turbulent pulsations of the medium takes place as a dif-
fusion process and that the existence of an effective
mixing length ξ� of substance �, the distance to which
the turbulent moles (vortices) in the flow move before
they are destroyed through the interaction with other
disturbances, may be admitted. If we denote the
Lagrangian turbulent pulsation of the transferred sub-
stance � corresponding to the Eulerian pulsation �'' by

 and the effective mixing length by ξ�, then we may

write  = �'' + ξ�∇(〈�〉)36  = –ξd∇〈Cd〉. Hence,

the diffusion flux  of the system’s dust component in
terms of the gradient representations is

(95)

where the dyad  ≡ 〈u''ξd〉 defines the nonsymmetric
turbulent diffusivity tensor of the dust that, in the gen-
eral anisotropic case, allows for the differences in the
intensities of the turbulent pulsations of the solid parti-
cle velocity and concentration along different coordi-
nate axes. Relation (95) is equivalent to the assertion
that the turbulent flux of the dust phase is proportional
to the gradient in mean concentration 〈Cd〉 and has the
direction opposite to it. It is important to keep in mind
that using the gradient hypothesis does not eliminate all
of the difficulties associated with the closure problem,
since the corresponding turbulent transfer coefficients
must also be determined (experimentally or based on a
qualitative physical analysis).

For an isotropic turbulent field, we may assume that

the tensor  is spherical,  = I , i.e., is

defined by the turbulent diffusivity of the dust (x)
alone (a statistical parameter of turbulence); then,

(96)

and the averaged diffusion equation (92) takes the form

(92*)

35In the past decade, deeper (in physical content) differential turbu-
lence models have come to be used to model turbulent single-
phase flows in thin accretion disks. Apart from the equations for
averaged quantities, these models include the additional differen-
tial transfer equations for the most important parameters of the
turbulent structure (see, e.g., Dubrulle, 1992).

36The dust substance is assumed to be indestructible; that is, the
dust amount in an elementary volume is not changed while it is
moving without mixing with the ambient gas.
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where νturb is a turbulent analog of the coefficient of
kinematic viscosity for a gas–dust mixture (see below);

Scturb ≡ νturb/  is the turbulent Schmidt number for
the disperse phase (a dimensionless factor of the order
of unity that depends on the nature of the dust substance
and that is a function of the dimensionless flow param-
eters). In the gradient theory, the Schmidt number is
calculated using the formula Scturb = ξu/ξd, where ξu is
the velocity mixing length. The dependence of the
Schmidt number on the dust particle concentration was
first obtained by Abramovich and Girshovich (1973).

The turbulent transfer coefficient; the Stocks
number. First, note that the coefficients of turbulent
transfer in any turbulized medium, in contrast to the
corresponding molecular transfer coefficients, describe
not just its thermophysical properties, but also the state
of the turbulent field and, hence, depend on the averag-
ing scale of the pulsating thermohydrodynamic param-
eters. For this reason, the way of introducing the aver-
aged characteristics of turbulent motion is crucial in
developing the methods for experimentally determin-
ing this kind of transfer coefficients. The assumption
that the particles are completely entrained by the turbu-
lent pulsations of the scale that plays a major role in
particle encounter mechanics (the approximation of a
passive admixture) underlies the most advanced
approach to modeling the turbulent diffusivity. If the
solid particles are very small and, hence, their motion
does not differ in any way from the motion of the gas
carrier moles, then the turbulent diffusivity of the dust

particles  and the coefficient of turbulent viscosity

νturb of the gas are equal for them. In this case, 
depends only on the turbulent pulsation scale length of
the carrier gas and can be estimated, for example, as

(97)

The following notation is used in this expression: b is
the turbulent energy of the gas–dust medium as a whole

(see (107)); ε ≅ b3/2/l ≅ /  is the dissipation rate of

the turbulent gas energy (see Eq. (125*)); λK ≅ ( /ε)1/4

is the Kolmogorov (internal) turbulence scale length;
and l(x) is the Prandtl mixing length (a numerical factor
that can be included in l). Below, we call l the turbu-
lence scale length at a given point in the flow.

It should be noted, however, that the numerous
experimental data (see, e.g., Mednikov, 1981) confirm

the equality  ≅ νturb only for very small particles,
when the dimensionless Stokes number in the large-
scale pulsational motion Syk � 1. In general, several
Stokes numbers Stk, which are equal to the ratio of the
dynamic relaxation time of the dust particles to partic-
ular flow time scales (e.g., to the Kolmogorov turbu-
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lence time scale τK ≅ (νg/ε)1/2 or to the time scale of the
large-scale pulsational motion of the medium τL ∝ b/ε)
that characterize the particle inertia relative to the cho-
sen flow scale in the turbulent flow, can be introduced
for a turbulized heterogeneous flow. In the case of
Keplerian differential rotation of the solid particles in
the disk, where there is a radial gradient in averaged
velocity, it is important to take into account the particle
inertia when analyzing the relaxation of the averaged
phase velocities. For this purpose, it is convenient to
introduce the Stokes number in the averaged motion,
which we will write as Stk = ωturbτrelax, where τrelax is the
dynamic relaxation (dynamic inertia) time of the parti-
cles; ωturb is the lower frequency limit for the turbulent
pulsations of the carrier gas in the disk belonging to the
largest vortices with the (macroscopic turbulence) scale
length L; the frequency ωturb then determines the slow
macroscopic variations in flow parameters (which are
generally not related to turbulence) and, according to
Safronov (1969), is specified in the form ωturb = ΩK, mid,

where ΩK, mid ≡  is the orbital frequency (the
Keplerian angular velocity near the midplane of the
disk). Cuzzi et al. (1993) slightly refined this estimate:
ωturb ≈ ζΩK, mid, where ζ ≈ 0.0126.

For small spherical particles (e.g., with diameters
�1 cm at 1 AU or ~600 cm at 10 AU), the dynamic
relaxation time scale is defined by the Epstein law (see
Eq. (21))

(98)

(the mean free path of gas molecules at 1 AU is λg ~
1 cm). However, for coarse spherical particles, this for-
mula is slightly modified. The simplest expression for
τrelax can be obtained when the Reynolds number for

dust, Red = |w |/νg = 2 |w |/λgcsg, is fairly small,
Red < 1 (which is the case for the so-called Stokes par-
ticles). This inequality is true, for example, for particles
with diameters from 1 to 10 cm at 1 AU and with diam-
eters from 600 to 1000 cm at 10 AU (Dubrulle et al.,
1995). In this case, according to Eq. (22), the coeffi-

cient of aerodynamic resistance is CD(Red) = 9  and
the dynamic relaxation time scale τrelax will be defined
by the Stokes law

(99)

Thus, the inertia of a Stokes particle depends on the
parameters of the medium in which it moves. In addi-
tion, if the particles are not too small (and, hence, are
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not entirely entrained by the gas carrier moles), then
their relative velocities acquired through turbulent pulsa-
tions depend significantly on their masses. For the
motion of a non-Stokes particle, its inertia depends on
the Reynolds number for dust Red and may be written as

(99*)

where

is a correction function that allows for the influence of
inertial forces on the relaxation time scale of the non-
Stokes particle (the coefficient of aerodynamic resis-

tance for the particle is CD(Red) = 9 C(Red)). The
difference between the pulsation velocities of particles
of different sizes determines their encounter and
increases the collision probability.37 Thus, the follow-
ing formula (cf, e.g., Cuzzi et al., 1993) is valid for a
polydisperse disk medium:

(100)

A defining equation for the averaged relative
velocity. Averaging the defining equation (19*) for the
actual values of vector w yields

(101)

In writing this relation, we disregarded the pulsations w'
of the relative velocity (which is valid only when the
velocity of the averaged relative phase motion  is
much higher than the pulsation velocity w', i.e., for
fairly large particles) and the products of the averaged
thermodynamic fluxes of various natures as terms of the
second order of smallness. In addition, we used the
identical transformation

(102)

which can be tentatively written as d�/dt = D�/Dt +

u'' · ∇� = D�/Dt + u'' · ∇  + u'' · ∇� by averaging
the substantial derivative d�/dt.

37The inertial coagulation of particles in a turbulized flow is also
related to this fact.
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The Averaged Smoluchowski Coagulation Equation

Turbulence leads to two types of phenomena that
affect the coagulation in a disperse system. First, the
particles acquire an additional relative velocity under
the effect of turbulent pulsations, which, in turn,
changes the coagulation kernel K(W, U) that character-
izes the particle collision probability in the system (see,
e.g., Voloshchuk, 1984). Here, so far we can talk about
two coagulation-accelerating effects with certainty. The
first effect is related to an increase in the trapping coef-
ficient through turbulent mixing; as a result, the number
of collisions between solid particles increases signifi-
cantly compared to a laminar flow. The second effect is
related to the presence of a shear in the turbulent flow
velocity field that causes a change in the trapping con-
ditions at K(W, U) close to zero and increases the coag-
ulation probability of small particles (see, e.g., Woods
et al., 1972).

The phenomena of the second type are related to the
collective behavior of particles in a turbulized system.
Turbulence increases the local nonuniformities in the
distribution of coagulating particles to scales compara-
ble to the mean separation between the particles,
thereby giving rise to fluctuations in the particle size
distribution function f(U, x, t) at macroscopic dis-
tances. From a physical point of view, since the coagu-
lation equation (33) is nonlinear, this variation in con-
centration of particles with volume U results in an
acceleration of the coagulation in a region with an
enhanced particle concentration and in its deceleration
in a region with a reduced particle concentration, so, on
average, this leads to a different coagulation rate than in
the uniform case (U = const) and contributes to the
faster appearance of large particles.

This process can be described by the formal averag-
ing of the coagulation equation (33)

(103)

ρ D
Dt
------ f U( )

ρ
-------------⎝ ⎠

⎛ ⎞ ∇ J f
turb U( ) f U( ) Cg〈 〉w+[ ]⋅+
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1
2
--- f W( ) f U W–( )K W U W–,( )dW

0

U

∫
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0

∞

∫

+
1
2
--- f ' W( ) f ' U W–( )K W U W–,( )dW

0

U

∫

– f ' U( ) f ' W( )K W U,( )dW ,

0

∞

∫

where

(104)

is the turbulent flux of the dust particles of volume U;

〈Cg〉 = (1 – ) / ;  is the turbulent diffusivity for
the fraction-U particles, the expression for which was
derived, for example, by Schmitt et al. (1997). Equa-
tion (103) is not closed, since the function γ(U, W, x, t) ≡

 is undefined. The equation for
γ(U, W, x, t) can be derived by multiplying the basic
equation (33) by f and by its subsequent stochastic aver-
aging over the ensemble of possible realizations to give
an equation that contains the mean of the product of
three functions f '. This operation leads to an infinite
chain of equations. The problem of closing the latter
was solved only by introducing a particular hypothesis.

If we integrate Eq. (103) over U, then the equation
for the averaged total number of disperse particles

(x, t) will take the form

(105)

where

(106)

is the turbulent flux of the number of dust particles for

which the representation  =  = /ρd  is
valid. Since the function γ(U, W, x, t) must be positively
defined in view of its symmetry in U and W, the coagu-
lation in a turbulized medium with nonuniformly dis-
tributed particles will be faster. In conclusion, note that,
despite its importance, the question of how the fluctua-
tions affect the coagulation rate has not yet been fully
developed and requires a solution.

The Averaged Equation of Motion 
for a Gas–Dust Disk Medium

Given Eq. (83*), the Favre averaging of the instan-
taneous equation of motion (35) for the gas–dust mix-
ture considered as a single entity yields

(107)
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where

(108)

is the so-called turbulent (Reynolds) stress tensor, which
takes the following form in Cartesian coordinates:

(109)

The Reynolds tensor is a symmetric tensor of the sec-
ond rank and describes the turbulent stresses produced
by the pulsations of the turbulent velocity field in the
gas–dust continuum as a whole. It is well known (see,
e.g., Monin and Yaglom, 1992) that in a developed tur-
bulent single-phase flow, i.e., at large values of the glo-
bal Reynolds number Reglob = Lu0/ν corresponding to
large-scale motions (here, u0 are typical changes in the
velocity of the gas–dust mixture at distances of the
order of the macroscopic turbulence scale length L; and
ν is the effective coefficient of kinematic viscosity for
the gas suspension), we may disregard the averaged vis-

cous stress tensor of the medium  compared to the
Reynolds stress tensor R, except the thin regions of the
so-called viscous sublayer that border the solid sub-
strate (in our case, the thin layer of dust adjacent to the
midplane of the disk is this substrate). This is also valid
for a differentially rotating Keplerian protoplanetary
disk with a typical Reynolds number Reglob ≥ 1010, since
the turbulent viscosity of its material is larger than the
molecular one by 8 orders of magnitude or more, as fol-
lows from the observed distribution of angular momen-
tum and mass in the Solar system and in numerous sys-
tems of young stars with disks (see, e.g., Richard and
Zahn, 1999). However, it should be kept in mind that
the aforesaid does not apply to the averaged relative

stress tensor of the phases , whose effect on the
two-phase flow of the disk medium can be comparable
in order of magnitude to the Reynolds tensor R. In par-
ticular, near the subdisk, where the concentration of
dust particles of fairly large sizes (and, hence,  � 0)
is significant, these shear stresses act particularly effec-
tively, leading to additional flow turbulization, but in a
volume comparable to the volume of the dust layer, i.e.,
small compared to the total disk volume (see, e.g., Gol-
dreich and Ward, 1973).

Using the fact that the Lagrangian pulsations of the
weighted mean gas–dust flow velocity are conservative,
(u'')L ≅ 0, it can be shown that the Reynolds tensor R
(for an isotropic turbulent field) is related to the gradi-
ents of Favre averaged flow velocity ∇〈u〉 by the fol-

R ρu ''u ''–≡ ρ u ''u ''〈 〉–=

Rij ρui''u j''–≡

ρu1''
2

– ρu1''u2''– ρu1''u3''–

ρu2''u1''– ρu2''
2

– ρu2''u3''–

ρu3''u1''– ρu3''u2''– ρu3''
2

–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

P

Prel

w

lowing defining relation38 (see, e.g., Kolesnichenko
and Marov, 1999)

(110)

or

(111)

where D ≡ 1/2(∇〈u〉 + (∇〈u〉)transp) is the averaged

deformation tensor;  is the averaged deformation rate
tensor;39 νturb is the kinematic coefficient of turbulent
viscosity for the gas–dust mixture. The possible anisot-
ropy in the coefficients of turbulent viscosity νturb in a
differentially rotating gas–dust cloud (see, Safronov,
1969) was analyzed in detail by Kolesnichenko (2000).

Relation (110) includes a key parameter in the the-
ory of turbulence,

, (112)

the averaged kinetic energy of the turbulent pulsations
in the weighted mean velocity of the gas–dust contin-
uum (turbulent energy); in general, the corresponding
balance equation (see (145)) is needed to determine it.
Since a continuous distribution of velocity pulsations u''
at various frequencies f (from the minimum ones deter-
mined by the viscous forces to the maximum ones
determined by the boundary conditions for the flow) is
produced in a developed turbulent flow, it is often con-
venient to represent dispersion (112) as the sum of the
corresponding quantities pertaining to different fre-
quencies,

(113)

where b(f) is the fraction of the turbulent energy of the
gas–dust mixture that corresponds to the frequency
band df (the energy spectrum for b).

Under the above assumptions, the averaged relative

stress tensor  in Eq. (107) (recall that the tensor Prel

arises from the inertial effects of the relative motion of

38The defining relations for the Reynolds stress tensor R (110) and

the averaged viscous stress tensor  were derived by Marov and
Kolesnichenko (2002) by the methods of nonequilibrium thermo-
dynamics from the averaged Gibbs relation.

39In what follows, we retain the designations D and  for the
averaged deformation and deformation rate tensors, which cannot
not lead to ambiguity (cf. Eq. (40).
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the coarse dust particle fraction and gas (see Eq. (37)))
can be transformed to

(114)

For a two-phase turbulent flow, all correlations in rela-
tions (114) are usually disregarded and only the first
term is retained (see, e.g., Zuev and Lepeshinskii, 1981;
Kartushinskii, 1984):

(115)

which is valid only if the averaged relative velocity of the
phases  is much higher than the pulsation velocity w',
i.e., for fairly large solid particles. For lower-inertia fine
and medium particles, the first two terms in (114)
should generally be retained; then,

(116)

where Rrel ≡ – 〈Cd〉  is the additional Reynolds
stress tensor attributable to the pulsations of the relative
velocity field of the phases. In gradient models, two
methods are used to determine the pair correlations of
this type. According to the first method, the correlation
moments of Rrel for relatively small particles are
expressed directly in terms of the Reynolds stresses R
for the gas–dust continuum as a whole, i.e., Rrel = βR,
where β is the coefficient of entrainment of disperse
particles into the pulsational gas motion (see, e.g.,
Gavin et al., 1984). The second method of determining
the additional turbulent stresses Rrel uses gradient rela-
tions of type (111) with  substituted for the averaged
velocities 〈u〉 and with the determination of the corre-
sponding coefficient of turbulent viscosity (see, e.g.,
Melville and Bray, 1979).

The Balance Equation for the Averaged Internal 
Energy of a Mixture

We will obtain the averaged energy equation for the
gas–dust disk system as a whole by averaging the
energy equation (45) for instantaneous motion over the
ensemble of possible realizations. As a result, we have

(117)
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---------------------

d psum

dt
------------- ∇ qsum

turb qsum+( )⋅–=

+ Φu Rgd w 2 sσw ∇p⋅– ,+

where  = qturb + ;

(118)

is the turbulent heat flux arising from the correlation
between the enthalpy, H'', and hydrodynamic velocity, u'',
pulsations;

(119)

is the turbulent radiative heat flux. The approximate
relations for the thermal energy fluxes (118) and (119)
are written up to the terms containing triple correla-
tions. Formula (118) can be easily derived using the
algebraic property (83) of the Favre averaging and the
expression

(120)

for the specific enthalpy pulsations of the disk material.
Here,  = cpαT '' is the partial enthalpy pulsation for
phase α (cpα = const);

(121)

are, respectively, the averaged and pulsation compo-
nents of the specific heat of the mixture at constant
pressure. The averaged values for the enthalpies of radi-
ation and matter appearing in Eq. (117) are defined by
the relations

(122)

that follow from (43) and (44).
It is convenient to represent the substantial deriva-

tive of the total pressure in Eq. (117) using Eq. (102) as

(123)

In addition,  can be transformed as

(124)

qsum
turb qrad

turb

qturb ρH ''u '' cp〈 〉ρT ''u '' hα〈 〉Jα
turb

α
∑+≅≡

qrad
turb ρHrad'' u '' cp rad,〈 〉ρT ''u '',≅≡

cp rad,〈 〉 16a T〈 〉3/3ρ≡

H '' hα'' Cα〈 〉 hα〈 〉Cα'' Cα''hα''( ) ''+ +[ ]
α
∑=

=  cp〈 〉T '' Cα'' hα〈 〉 cp''T ''( ) ''+
α
∑+

hα''

cp〈 〉 cpα Cα〈 〉 , cp''
α
∑ cpαCα''

α
∑= =

Hrad〈 〉 4/3a T〈 〉4/ρ,≅

H〈 〉 cp〈 〉 T〈 〉 hα
0 Cα〈 〉

α
∑+≅

d psum/dt D psum/Dt Jv
turb ∇ psum u '' ∇ psum'⋅+⋅+≡

=  D psum/Dt Jv
turb ∇ psum⋅+

+ ∇ psum' u ''( )⋅ psum' ∇ u ''⋅ .–

Φu

Φu Psum : ∇ u〈 〉 Psum : ∇u ''+≡

=  Psum : D ρ εe〈 〉 ,+



30

SOLAR SYSTEM RESEARCH      Vol. 40      No. 1      2006

KOLESNICHENKO, MAROV

where

(125)

is the dissipation rate of the turbulent kinetic energy of
the gas–dust mixture into heat under the effect of
“molecular” viscosity (a second key parameter in the
theory of turbulence). It can be shown (see Marov and
Kolesnichenko, 2002) that the dissipative term (125)
for developed turbulence is slightly simplified,

(125*)

note that ε (the “true” dissipation of turbulent energy) is
always positive. Substituting (123) and (125*) in (117)
yields an averaged energy equation for the gas–dust
mixture in the form

(126)

Defining relations for the turbulent heat fluxes are
required to close Eq. (126); these relations derived in
our monograph (Marov and Kolesnichenko, 2002) are

(127)

(128)

where

(130)

are, respectively, the coefficient of turbulent heat con-
ductivity for the gas–dust medium and the coefficient of
turbulent radiative heat conductivity; 〈cp〉 = [ (1 – ) +

ρd cpd]/  is the averaged specific heat (at constant
pressure) for the total continuum.40 According to
Eq. (127), there are two mechanisms of thermal energy
transfer through the gas suspension:

40Below, we will assume that Scturb = Prturb in the disk, since the
turbulent diffusivity and the coefficient of turbulent heat conduc-
tivity in a turbulized mixture are commonly assumed to be equal
(χturb/ 〈cp〉 = Dturb), which is equivalent to the equality of the
mixing lengths for matter and heat.
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3κρ
---------------------= =

ρg s

s ρ

ρ

(1) under the effect of the averaged temperature
(more precisely, potential temperature) gradient

(131)

since  =  ≈ (∇z〈T〉 + Ga),

where Ga ≡ gz/〈cp〉 is the adiabatic temperature gradient
in the gas–dust disk (see Eq. (177));

(2) by the turbulent diffusion fluxes  =

− Dturb∇〈Cα〉 (see (96)), with each particle of phase α
transferring, on average, the thermal energy 〈hα〉 (since

 = 0,  =  = Dturb).

It should also be noted that the first terms in (127)

and (128) do not act as the energy flux, because 
drops out of the complete energy equation (126), and
were retained in Eqs. (127) and (128) only for conve-
nience.

Let us now write Eq. (127) in a form useful for mod-
eling a turbulized gas suspension. Using (96) to trans-
form (127) yields

(127*)

where we made the usual (for the theory of turbulence)
assumption that the turbulent Lewis number is equal to
unity, Leturb = χturb/ 〈cp〉Dturb = 1 (see Monin and
Yaglom, 1992).

It is occasionally convenient to write Eq. (126) via
the averaged total energy 〈Esum〉 of the matter and radi-
ation. Using for this purpose the transformation

(132)

(which is a corollary of the relation 〈Hsum〉 = 〈Esum〉 +
/  and the averaged continuity equation (85)), we

obtain for a developed turbulent flow

(126*)
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The Turbulent Flux of the Specific Volume 
in a Gas–Dust Medium 

Let us now derive the final relation for the turbulent

flux of the specific volume  (see Eq. (91*)). For its
derivation, let us first find the expression for the turbu-
lent density pulsations  in the gas component of the
mixture; as the equation of state for the latter, we will
take, as previously, the equation of state for a perfect
multicomponent gas

(133)

where

(134)

is the so-called gas component for the mixture of gases;
Zk = ng(k)/ρg is the specific (per unit mass of the gas con-
tinuum) number density of component k. Representing
the actual values of �g and T as the sums of the aver-

aged and pulsational values (�g = 〈�g〉 + , T =
〈T〉 + T ''), let us rewrite (133) as

(135)

If we now apply the statistical averaging operator to
(135), then we will obtain the averaged equation of
state for the thermal gas-suspension pressure

(136)

(note that the pulsational term in the averaged equation
of state (136) is usually discarded in the theory of tur-
bulence), which we will use to eliminate the product
〈�g〉〈T〉 from (135); as a result, we will have for the pul-
sations  (Marov and Kolesnichenko, 1987)

(137)

It is well known that the relative pressure pulsations
for gas flows with small Mach numbers (Ma) may be
disregarded almost always compared to the relative
temperature pulsations. This hypothesis (Morkovin,
1961), which has been tested up to Ma = 5, is probably
also valid for turbulent motions in thin accretion disks:
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the motion along the r and z directions is subsonic,
while the rotation velocity uϕ exceeds the speed of
sound cgs (the thin-disk condition hdisk � r, together
with the expression hdisk ≈ cgs/ΩK, mid for the disk thick-
ness, requires that hdisk/r ≈ cgs/uϕ � 1). Below, we will
also assume that the mean mass of the gas component
of the gas suspension does not fluctuate; therefore,

 = (ng/ρg)'' = 0. Using (137), the correlation
term (containing the true gas density pulsations in
Eq. (91*) can then be rewritten as

(138)

(here, as everywhere below, the terms with triple corre-
lations were discarded). For the final transformation of
this expression, we will use the defining relation (127)
for the turbulent heat flux (118):

(139)

Finally, substituting (96) and (139) in (91*) and using
(130), we will obtain the following defining relation for
the turbulent flux of the specific volume for a heteroge-
neous mixture:

(140)

Energy Balance Equations

In a turbulized flow of disk material, compared to its
laminar analog, there is a great variety of possible trans-
fer mechanisms (conversion rates) between the various
forms of the energies of motion of solid particles and
gas that contribute to the conserved averaged total
energy. To interpret the individual terms of the energy
balance most accurately, let us consider the complete
system of energy equations for the averaged fields of
pulsating thermohydrodynamic parameters for a gas–
dust cloud, including the balance equation for the
kinetic energy of turbulent pulsations.

The balance equation for the averaged kinetic
energy of a gas–dust flow. Given Eq. (38) for the grav-
itational force, a scalar multiplication of the equation of
motion (107) by the velocity 〈u〉 after the necessary
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transformations yields the following substantial form
of the equation of live forces for the averaged motion of
disk material (the momentum theorem):

(141)

Here, –∇〈Ψ〉 = g = G��r/|r |3, |〈u〉|2/2 is the specific
kinetic energy of the averaged motion of disk material.
Although Eq. (141) is of an energy nature, it is not the
law of conservation of energy in a turbulized contin-
uum: Eq. (141) describes the law of conversion of the
kinetic energy of the averaged gas-suspension motion
into the work of external bulk and surfaces forces and
the work of internal forces (and conversely) without
allowance for the irreversible conversion of the
mechanical disk energy into thermal and other forms of
energy.

Let us explain the physical meaning of the individ-
ual terms in Eq. (141): the quantity ∇ · ( 〈u〉) is
related to the outflow of mechanical energy from a unit
volume of the disk medium per unit time; the diver-

gence ∇ · [(R + )〈u〉] is the rate with which the

total surface stress (R + ) in the averaged moving
“gas suspension plus radiation” system does the work
in a unit volume; the quantity ∇ · 〈u〉 (>0 or <0) is
related to the rate of inverse adiabatic transformation of
the averaged internal energy (heat) 〈Esum〉 into the sys-
tem’s mechanical energy (see Eq. (126*)) and is the
work done per unit time in a unit volume against the
averaged total pressure  by the flow of a moving

gas suspension; the sign of ∇ · 〈u〉 depends on
whether the mixture flow will expand (∇ · 〈u〉 > 0) or

contract (∇ · 〈u〉 < 0); the quantity (R + ) : ∇〈u〉 is
the total rate of irreversible transformation of the
kinetic energy of mean motion into other forms of
energy (see Eqs. (126*), (144), and (149)), with the
energy dissipating under the effects of both “molecu-

lar” viscosity with the rates  : ∇〈u〉 and  : ∇〈u〉
and turbulent viscosity with the rate R : ∇〈u〉.

Adding Eq. (141) and the balance equation for the
potential energy of disk material

(142)

ρ D
Dt
------ u〈 〉 2/2( ) ∇ I psum R Psum*––( ) u〈 〉[ ]⋅+

=  psum∇ u〈 〉⋅ R Psum*+( ) : ∇ u〈 〉– ρ u〈 〉 ∇ Ψ〈 〉 .⋅–

psum

Psum*

Psum*

psum

psum

psum

Psum*

Psum Prel

ρD Ψ〈 〉
Dt

--------------- ∂
∂t
----- ρ Ψ〈 〉( )≡

+ ∇ ρ u〈 〉 Ψ〈 〉( )⋅ ρ u〈 〉 ∇ Ψ〈 〉⋅=

yields the following transfer equation for the averaged
mechanical energy of a turbulized gas–dust flow:

(143)

The balance equation for the averaged kinetic
energy of the relative phase motion. Averaging
Eq. (43) and disregarding the third-order correlation
terms (and, thus, the turbulent kinetic energy of the
interphase diffusion41 and the products of the thermo-

hydrodynamic fluxes (e.g., the terms  : ∇ ) in
the averaged gas–dust continuum as quantities of the
second order of smallness, we obtain

(144)

where

(145)

Here, the heat dissipation  : D (the mean work done
by the relative stress tensor on the averaged velocity
gradient ∇〈u〉 ≠ 0 due to the relative phase velocity
shear in the orbital motion of the disk material) is
related to the conversion rate of the averaged kinetic
diffusion energy into the kinetic energy of the averaged
motion of the gas mixture as a whole (cf. (141)); σrel is
the additional generation source of turbulent energy b
related to the presence of medium and large inertial par-
ticles in the flow (see Eq. (149*)). It should be kept in
mind that, according to Gore and Crowe (1989), the tur-
bulent vortex wakes that destabilize the gas flow and
transform the energy of the averaged relative motion
into the high-frequency components of the turbulence
energy spectrum are formed only behind large particles
(at Reynolds numbers of the flow around the particles
Red > 400). In contrast, small particles (Red < 110) pre-
dominantly suppress the turbulence energy, spending it
on their own acceleration (i.e., their entrainment into
the pulsational motion of a polydisperse flow); the lam-
inarizing effect of the disperse phase on the flow
increases with decreasing particle inertia. As regards

41We disregard the turbulent kinetic energy of the interphase diffu-
sion as a quantity of the third order of smallness and, thus, do not
consider the specific form of the additional dissipative term
related to the presence of fine particles (see Danon et al., 1977) in
the turbulent energy transfer equation for the gas–dust medium
(149) considered as a single entity. It is important to note that for
a flow with medium and large particles, whose relaxation time is
significant, the additional dissipation of turbulent energy will be
negligible compared to the other terms in Eq. (149) (see, e.g.,
Varaksin, 2003).
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medium-sized particles (110 < Red < 400), they have a
mixed effect on the disk turbulence.

The turbulent energy balance. Let us now con-
sider the transfer equation for the turbulent energy b =

 of the gas–dust material of an accretion disk.
This fundamental (in the theory of turbulence) equation
or some of its modifications underlie many present-day
semiempirical theories of turbulence (see Monin and
Yaglom, 1971; Kolesnichenko and Marov, 1999).
Using the equation for b in the case of a heterogeneous
medium, we can, in particular, analyze the dynamical
effect of the disperse phase on the intensity of turbu-
lence in a gas–dust disk medium and develop a phe-
nomenological method of modeling the coefficient of
turbulent viscosity for the medium by taking into
account the influence of the inverse effects of the dust
transfer and “potential” temperature on the decay
(maintenance) of shear turbulence in a protoplanetary
cloud. The balance equation for b can be derived by
various methods (see Marov and Kolesnichenko,
2002), one of which we will use in the case of a two-
phase medium considered here.

Let �(x, t) be the actual value of a scalar quantity
(in particular, this can be the vector components) whose
substantial balance is ρd�/dt = –∇ · J� + σ�, where J�
and σ� are, respectively, the substantial flux density
vector and the volume density of source �. For exam-
ple, for the equation of motion (35),

(146)

It is easy to show (this requires multiplying the identity
d�''/dt = d�/dt – D〈�〉/Dt – u'' · ∇〈�〉 by ρ�'' and the
Reynolds averaging of the result) that the balance equa-
tion for the root-mean-square pulsation 〈�''2〉 has the
following general form (see Kolesnichenko, 1995):

(147)

where

(148)

is the rate of scalar dissipation of the dispersion 〈�''2〉.
The generalized transfer equation (147) contains the
terms that reflect the influence of the following pro-
cesses on the space-time distribution of the dispersion
〈�''2〉: convective transfer, diffusion, the dispersion for-
mation through the energy transfer between the aver-
aged and pulsational motions, redistribution (between
the pulsational motions in various directions), and the
dissipation of the turbulent characteristic 〈�''2〉 through
the “molecular” transfer processes.

u '' 2/2

� u, J� Psum* , σ�– psumI– ρg.+≡ ≡ ≡

ρD � ''2/2〈 〉
Dt

------------------------- ∇ ρ� ''2u ''/2 � ''J A( ) j+( )⋅+

=  JA
turb  ∇ �〈 〉  ⋅–  � ''σ�  ρ ε�〈 〉 ,–+

Convection Diffusion

Reproduction Redistri-
bution

Dissipation

ρ ε�〈 〉 J� ∇� ''⋅–≡

Let us now substitute (146) in (147) and (148); as a
result, we obtain the following transfer equation for the
turbulent energy of a gas–dust mixture:

(149)

where

(150)

The estimates of the individual terms in Eq. (149)
obtained for developed turbulence in our monograph
(Marov and Kolesnichenko, 2002) allow it to be
slightly simplified:

(149*)

where

The first term on the left-hand side of Eq. (149*)
describes the change with time (and the convective
transfer by the averaged motion) in the kinetic energy of
disk turbulence b, and the second term reflects the turbu-
lent pulsation energy transfer through the turbulent “dif-
fusion” processes; the quantity (energy dissipation)

(150*)

(see Eq. (B.11)) on the right-hand sides of Eqs. (141)
and (149*) appear with different signs and, therefore, it
may be interpreted as the conversion rate of the kinetic
energy of the averaged motion into the turbulence
energy of the gas–dust disk medium considered as a
whole42 (this hydrodynamic generation mechanism of
turbulence in a differentially rotating Keplerian disk is
considered in this paper as the main mechanism (see

Fridman, 1989)); the quantity  is related to
the transformation rate of the internal energy of the gas
suspension into the kinetic energy of turbulent vortices
and is the work done per unit time in a unit volume of

42It should be emphasized that this energy conversion is a purely
kinematic process that depends only on the chosen space-time
averaging scale of the turbulent motion. For small-scale turbu-
lence, the quantity R : D is always positive, so small-scale turbu-
lence always transforms the kinetic energy of the averaged
motion into the kinetic energy of turbulent pulsations (this is the
so-called dissipative effect of small-scale turbulence). At the
same time, the kinetic energy of turbulence can be transferred to
the energy of the averaged motion by large-scale turbulent vorti-
ces (see, e.g., Van Migem, 1977).
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psum' ∇ u '⋅



34

SOLAR SYSTEM RESEARCH      Vol. 40      No. 1      2006

KOLESNICHENKO, MAROV

the pulsating medium on the vortices as a result of the
existence of pulsations in the total pressure  of the
disk medium and the expansion or contraction of turbu-

lent vortices (∇ · u' > 0 or ∇ · u' < 0); the quantity  ·

∇  is the conversion rate (in a unit volume of the
medium) between the turbulent and averaged internal
energies of the disk; small-scale vortices transform the

turbulence energy into heat, since  · ∇  > 0 for
them, while large vortex structures related to thermal

convection (for which  · ∇  < 0 (see
Kolesnichenko and Marov, 1999)) transform the ther-
mal energy of the gas–dust flow into the averaged
kinetic energy of the velocity pulsations (it should be
noted that this generation mechanism of turbulence in
the disk suggested by Lin and Papaloizou (1980) as the
main mechanism cannot be considered in this capacity,
since it is not universal and temporary in nature (see
Ruden and Polack, 1991; Nomura, 2002)); the pair cor-

relation ε ≡  > 0 in a developed turbulent
flow (the mean work done by the pulsations of the vis-
cous stress tensor43 on the turbulent vortices with a pul-
sation velocity gradient, ∇u' ≠ 0) is the dissipation rate
of the turbulent kinetic energy into heat under the effect
of molecular viscosity (see Eq. (126*)); finally, the

quantity σrel = –  > 0, the work in the turbu-
lent flow (per unit time in a unit volume) done by the
pulsations of the relative stress tensor on the turbulent
vortices (see Eq. 145)), may be interpreted as the addi-
tional generation of turbulence in the gas–dust disk
arising from the inertial effects of the relative motion of
the disperse and gas phases and related to the formation
of a vortex wake behind large particles with sizes >1 cm
(see, e.g., Zaichik and Varaksin, 1999). It is with this
mechanism of flow turbulization by large-scale parti-
cles of centimeter sizes or larger (produced through
coagulation and settling near the midplane of the pro-
toplanetary cloud) that part of the additional source of
turbulization of the gas-suspension flow near the thin
dust layer (see Goldreich and Ward, 1973) that, in the
opinion of many researchers largely, prevents further
settling of small (micron-size) dust particles to the sub-
disk and, thus, delays the onset of direct gravitational
instability of this layer44 can be associated (see, e.g.,
Safronov, 1969; Weidenschilling, 1984; Goodman and
Pindor, 2000).

43Recall that the value of the pulsations P ' of the viscous stress
tensor is determined by the effective (including the disperse
admixture) coefficient of kinematic viscosity for the gas–dust
medium considered as a whole; thus, the greater the degree of
entrainment of fine particles into the pulsational motion, the
stronger their effect on the pulsational component of the tensor P
that produces additional dissipation of the turbulent gas-suspen-
sion energy.

44To reach a critical density in the dust layer requires a very high
degree of its stabilization and flattening (Safronov, 1969).

psum'

Jv
turb

psum

Jv
turb psum

Jv
turb psum

ρ Psum'  : ∇u '

ρ Prel'  : ∇u '

The correlation σrel, up to the triple correlation
terms, can be transformed to

(151)

We see from this relation that the additional generation
of turbulence in the dusty disk (in particular, in the sub-
disk where relatively large solid particles are present)
can arise from the averaged dynamical sliding of the
phases, the correlation of the pulsations of the dust par-
ticle volume content and the gas concentration of the
mixture with the flow pulsation velocity, and the pulsa-
tional interphase sliding. As we have repeatedly
emphasized above, this additional source of turbuliza-
tion is small for fine particles, for which the inertia
effects may be ignored (Prel ≅ 0).

To conclude this section, note that, in general, the
energy equation (126*) for a gas–dust disk system is
written in astrophysical literature by assuming a
steady-nonequilibrium state of the turbulent field,
where an internal equilibrium exists in the turbulence
structure at which the production of turbulent entropy
Sturb of the gas–dust material is approximately equal to
its dissipation.45 If we take this condition for the bal-
ance of Sturb, then we will have (see Eq. (166))

(152)

and Eqs. (126*) for a developed turbulent flow can be
transformed to

(153)

or, using (144),

(154)

45Unfortunately, when modeling a disk, some of the authors use
the laminar energy equation with the coefficient of turbulent vis-
cosity substituted for the coefficient of molecular viscosity with-
out taking into account all the subtleties of deriving the energy
equation for a turbulized gas suspension.
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Thus, the equation for the internal energy of the aver-
aged turbulized gas–dust continuum written via the
absolute temperature takes the form

(153*)

Here, we disregarded the energy of the dissipation 
(in a unit volume per unit time) through the “molecu-
lar” viscosity of the gas–dust mixture compared to the

“frictional heat” 2 νturb  :  through the viscous
Reynolds stresses arising from the relative shear of the
gas–suspension elements in the orbital motion of the
disk material and the kinetic diffusion energy compared
to the internal energy of the gas suspension. It should be
noted that the presence of an internal heating source of
the protoplanetary disk related to turbulence viscosity
is in satisfactory agreement with the currently available
astrophysical data46 and with all cosmochemical con-
straints. In addition, under the assumptions made, an
additional heating source of the gas–dust medium
related to the energy dissipation under the effect of

“molecular” diffusion  : D appears in Eq. (153*); it
plays an important role in the subdisk, where the rela-
tive velocities of the phases can be significant.

The law of conservation of total energy for a tur-
bulized mixture. Adding the balance equations for the
internal energy (126*), mechanical energy (143),
kinetic energy of the interphase diffusion (144), and
turbulent energy of the disk system (149) yields the law
of conservation of total averaged energy for a two-
phase gas–dust mixture and radiation47 in the disk in a
substantial form:

(155)

46In the steady state, this heat released inside the disk due to vis-
cosity is not accumulated, but is transferred to its surface (mainly
through radiation) and is then radiated outward from the upper
and lower disk surfaces.

47In this section, we retained the designation Utot for the total
energy of the “matter plus radiation” system (cf. Eq. (42)).
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where

(156)

is the averaged total energy of the gas suspension and
radiation (see Eq. (42));

(157)

is the averaged actual total energy flux in the two-phase
gas suspension;

(158)

is the turbulent total energy flux of the mixture.
Combining Eqs. (157) and (158), we obtain the fol-

lowing expression for the total energy flux of the turbu-
lized flow of a gas–dust mixture:

(159)

Here,  +  is the total heat flux attributable to
both the averaged molecular transfer and the turbulent
transfer; 〈u〉 is the “mechanical” energy flux;

(  +  + R) · 〈u〉 is the total energy flux attribut-
able to the work of viscous, relative, and turbulent

stresses;  –  is the “diffu-
sion” flux of vortex turbulent energy. Note that the term

 in (158) and (159) does not act as the energy
flux, because it drops out of the total energy flux (159).

MODELING THE COEFFICIENT OF TURBULENT 
VISCOSITY IN A GAS–DUST DISK

Let us now consider a semiempirical method for
determining the coefficient of kinematic turbulent vis-
cosity νturb in a two-phase disk medium that includes
the influence of the inertial effects of medium-size and
coarse particles on the additional generation of turbu-
lence in a gas–dust cloud. Below, the velocity shear of
the cosmic material (when the kinetic energy of turbu-
lence is extracted from the kinetic energy of averaged
motion) related to its differential pattern of its rotation
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around the proton-Sun (see, e.g., Dubrulle, 1993;
Gor’kavyi and Fridman, 1994) is assumed to be the
main source of turbulence in the disk. Each layer of
material with radius r of a differentially rotating thin
disk48 (hdisk(r) � r) that lies near the rϕ plane (located
at z = 0 in cylindrical coordinates) moves almost
exactly according to Kepler’s third law, i.e., it rotates
increasingly fast as the central body (with mass ��) is
approached: the Keplerian orbital velocity is uϕ(r) =

rΩK, mid(r) =  and the angular velocity of
orbital rotation ΩK, mid(r) increases as r–3/2. Such motion
is a typical case of shear flow, which can be analyzed in
terms of the invariant modeling of developed turbulent
flows in inhomogeneous media developed in our mono-
graph (Kolesnichenko and Marov, 1999).

α-Parametrization of the Viscosity 
of a Protoplanetary Disk

The coefficient of turbulent viscosity in an astro-
physical gas-phase disk was first modeled by Shakura
and Sunyaev (1973) in their now classical paper. Using
Kolmogorov’s concept of dynamic turbulent viscosity

 =  (where  is the root-mean-square
velocity of turbulent pulsations limited by the speed of
sound in the gas calculated in the midplane of the disk,

 ≤ csg|z = 0 ≅ ;  is the so-called
Prandtl mixing length limited by the disk half-thickness

hdisk,  ≤ hdisk ≈ csg|z = 0 /ΩK, mid, ρg and pg are, respec-
tively, the mass density and pressure in the gas-phase
disk), these authors obtained the relation

(160)

between the r,ϕ component of the Reynolds turbulent
stress tensor Rrϕ and the thermal gas pressure pg. The
Shakura–Sunyaev disk parameter (a dimensionless free
parameter) α, which characterizes the degree of excita-
tion of turbulent motions, can be calibrated empirically
using time-dependent spectra obtained, in particular,
during observations of outbursts in binary systems with
mass transfer containing dwarf novae. For this case, it
was found that 0.01 ≤ α ≤ 1 (see, e.g., Eardley et al.,
1978). The models of turbulized accretion disks con-
structed using relation (160) pertain to the so-called
viscous α-disks. Determining the parameter α under
various assumptions about the nature of the physical
processes in the disk was the subject of many studies
(see, e.g., extensive bibliography to the paper by
Makalkin (2004)). In particular, a number of authors

48Note that the disk thickness is not constant, but increases with dis-
tance from the proton-Sun (to a first approximation, hdisk(r) ∝ r).

G��/r

µg
turb ρgug

turblg
turb ug

turb

ug
turb pg/ρg z 0= lg

turb

lg
turb

Rrϕ ρgνg
turb r( )r∂r uϕ/r( )=

=  3/2ρgug
turblg

turbΩK, mid r( )– α pg z 0= ,–=
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(see Dubrulle, 1993; Cabot et al., 1987), who used the
α-model when considering such physical mechanisms
of turbulence in a protoplanetary disk as differential
rotation, thermal convection, etc., obtained α ~ 10–3, the
value that satisfies best the astrophysical constraints.

Critical remarks. The main advantage of such an
heuristic approach to describing the disk turbulence is
that it is relatively simple: it will suffice to substitute the
coefficient of turbulent viscosity νturb(r) for the coeffi-
cient of molecular viscosity ν in the equations of stellar
hydrodynamics to somehow take into account the tur-
bulization of the medium in an accretion disk (in fact,
this is what most astrophysicists do by essentially
ignoring almost all correlation terms in the averaged
equations of motion). At the same time, it is important
to keep in mind that the Shakura–Sunyaev approach,
which was specially developed by the authors to model
thin (vertically uniform, i.e., structureless) astrophysi-
cal disks and which disregards the height dependence
of the coefficient of turbulent viscosity, is appropriate
to use only for global (one-dimensional in r) modeling
of the evolution of the solar protoplanetary disk with
parameters averaged over its thickness. In recent years,
however, this approach has come to be used uncritically
in astrophysical literature and in two-dimensional (r, z)
models that are associated in one way or another with
modeling of particular features of the vertical disk
structure, in particular, with calculations of the height
distribution of thermohydrodynamic parameters in the
dusty subdisk, which, of course, is wrong.

In addition, it should be borne in mind that for-
mula (160), which was derived for gas-phase disks, nat-
urally disregards the inverse effect of dust and heat
transfer on the development of turbulence in the disk,49

which should be done when modeling many phenom-
ena important for cosmogony. For example, when accu-
rately modeling the evolution of the protoplanetary
cloud as a viscous gas–dust disk that surrounded the
Sun at an early stage of its existence, it is important to
take into account the dynamical processes of gas–dust
interaction and, in particular, the inverse effect of the
inertial properties of dust particles on the intensity of
turbulence and the thermal regime of the subdisk. The
following is an argument for such a general approach:
the dust particles, which account for only ~2% of the
mass of the circumsolar protoplanetary cloud, may be
disregarded only at the initial evolutionary stage of the
cosmic system under consideration, when almost all of
the primordial (interstellar) dust particles evaporated.
At later stages of its evolution, as the protoplanetary
cloud cooled down, the solid particles condensed, their
sizes increased significantly through coagulation, the
disperse phase settled to the midplane of the disk, and
the gas dissipated from the disk system into interstellar

49This effect is that additional buoyant forces facilitating or pre-
venting the growth of turbulence in the disk arise due to the dif-
ference between the concentrations of dust material mixed with
the medium (during turbulent diffusion) or the temperature differ-
ence (during heat transfer) at separate points of the disk medium.
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space, the dynamical, energetic, and optical roles of the
dust component of the gas suspension increased signif-
icantly (see, e.g., Cuzzi et al., 1993). At first glance, tur-
bulent mixing hinders the diffusive separation of the
dust and gas components in the gravitational field of the
proto-Sun, preventing the settling of fine solid particles
to its equatorial plane (where they form a flattened dust
layer), and thus, inhibits the formation of a critical mass
of the subdisk at which it becomes gravitationally
unstable (Safronov, 1969). However, on the other hand,
as we have repeatedly noted above, nongravitational
accretion related, in particular, to the growth of parti-
cles through various turbulent coagulation mechanisms
becomes an efficient accumulation mechanism of
medium- and large-scale solid particles for turbulent
flow. In addition, turbulence facilitates the formation of
mesoscale, relatively stable gas–dust coherent struc-
tures that provide the most favorable conditions for the
adhesion of dust particles. In such vortex structures, the
number of collisions (per unit time) increases signifi-
cantly, while the relative collision velocities decrease
significantly compared to laminar conditions (through
the combined coherent mesoscale motion of particles
and small-scale turbulent pulsations of their relative
velocities inside vortex structures), which also contrib-
utes to the growth of a condensed subdisk component
(see Barge and Sommeria, 1995; Tanga et al., 1996;
Chavanis, 1999; Kolesnichenko, 2004). As the inertia
of solid particles increases, they are drawn into the pul-
sational motion of the gas carrier flow to a progressively
lesser extent. Thus, turbulence eventually contributes to
an efficient settling of dust particles to the midplane of
the disk and, thus, to the formation of a critical mass of
the disk whose gravitational instability and disintegra-
tion lead to the formation of planetesimals.

The pattern of the disperse-phase effect on the
dynamics of turbulent gas-suspension flow is not
unique, but depends significantly on the inertia and vol-
ume content (concentration) of dust particles, since
they can both laminarize and turbulize the flow (see
Shraiber et al., 1987). Kolesnichenko (2000) investi-
gated the rotation-generated flows of disk material
where the solid particles of the gas suspension begin to
have an inverse effect on the parameters of the latter.
Formula (160) for the coefficient of turbulent viscosity
was generalized to the case of allowance for the low-
inertia dust component where the approximation of a
passive admixture (in which the two-phase gas–dust
flow is approximated by the flow of a single-phase
“multicomponent” medium with known effective ther-
mophysical properties) could be used. It was recom-
mended to apply the derived corrections to the coeffi-
cient of turbulent viscosity that incorporate the inverse
effect of the transfer of a fine admixture and heat on the
growth of turbulence when modeling the formation of a
flattened dust layer in the disk.

At the same time, the influence of medium-size and
coarse particles on the processes of turbulent heat and
mass transfer in a protoplanetary gas–dust disk and
their contribution to the correction to the coefficient of

turbulent viscosity of a gas suspension remain an open
question. Determining this kind of correction is a chal-
lenging problem and requires an in-depth study of the
gas-suspension turbulence structure. In the next sec-
tion, we attempt to theoretically determine the coeffi-
cient of turbulent viscosity νturb in a gas-suspension
flow with large inertial dust particles.

Modeling the Coefficient of Turbulent Viscosity 
in a Dusty Subdisk

Before determining the above correction to νturb, we
will recall that the relationship between the coefficient
of turbulent viscosity and the gas-suspension turbu-
lence energy is defined by Kolmogorov’s relation (see
formula (97) in Kolmogorov (1942))

(161)

where l = l(x) is the turbulence scale length at a given
point of the flow (the numerical factor γ* may be
included in l). For a turbulized shear flow around an
infinite plane (in our case, the equatorial plane of the
disk, z = 0), the local turbulence scale length l(x) may
be assumed to be proportional to the thickness of the
thin layer under consideration,

(162)

or

(163)

where Φ is a dimensionless function; κ is the Karman
constant, which may be set equal to ~0.4.

It should be kept in mind that deriving an adequate
differential equation for the scale length l(x) is one of
the most complex problems in the semiempirical theory
of shear turbulence. The point is that, in general, l(x)
cannot be defined only via the one-point moments of
the pulsating velocity. Being a measure of the distance
between two points, x1 and x2, in a turbulized flow at
which the two-point correlators 〈u''(x1)u''(x2)〉 are still
differ markedly from zero, the scale length l(x) can be
found from the complex differential equations for these
moments by their integration over the distance between
x1 and x2 (see, for example, (Ievlev, 1975)). At the same
time, even in the case of a given differential equation
for l(x), there is a complex problem of boundary condi-
tions at the free boundary of the turbulent flow region,
where the scale l(x) does not tend to zero (see Laiht-
man, 1970). For these reasons, to ensure the efficiency
of practical calculations, the local turbulence scale
length l(x) is often specified in the form of purely
empirically found functions or calculated using an
algebraic formula of type (163) that includes only the
flow geometry, the distance to the wall, etc. and that
does not depend on the peculiarities of the fluid flow.50

50The Prandtl–Nikuradze formula for l(z) can probably be used in
certain cases; for the plane case considered here, it may be writ-
ten as l(z) = γ0.4z[1 – 1.1(z/hdisk) + 0.6(z/hdisk)2 – 0.15(z/hdisk)3].

νturb γ *l b,=

l z( ) γ *κz=

l z( ) γ *κzΦ Reglob Ri K, ,( ),=
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Internal equilibrium in the disk turbulence
structure. Let us now derive the sought-for correction
to νturb(x). We will restrict our analysis to a simplified
statistical scheme of turbulence in a two-phase medium
based on the turbulent energy transfer equation (149*)
alone (a one-parameter turbulence model).51 If we dis-
regard the small terms in Eq. (149*) (all of the neces-
sary estimates can be found, for example, in our mono-
graph (Marov and Kolesnichenko, 2002)), then, given
Eq. (110) for the Reynolds tensor and Eq. (140) for a

turbulent flow of specific volume , it can be rewrit-
ten as

(164)

where gz is the vertical gravity of the proto-Sun (see
Eq. (177)). As we already emphasized above, the con-
tribution of additional dissipation to ε is significant
only for relatively fine dust particles; as a result, it plays
no prominent role in the balance equation (164) for
coarse dust.52

To write Eq. (164) in the form required for our sub-
sequent purposes, we will use the basic concept of a
two-level macroscopic description of a turbulized
medium in the form of two interconnected continua
(open subsystems) that simultaneously fill the same
volume of coordinate space of the disk continuously,
the subsystem of averaged motion and the subsystem of
turbulent chaos, developed by Kolesnichenko (1998).53

For the disk material, the continuum of averaged
motion obtained through the probability-theoretical
averaging of the instantaneous equations of motion for
a heterogeneous medium (76) is intended to study the
evolution of the averaged fields of thermohydrody-
namic gas-suspension parameters (including also the
possible large vortex structures). The subsystem of tur-
bulent chaos for the disk (a vortex continuum with an
internal structure) generally consists of two compo-
nents: the turbulent chaos proper (the so-called incoher-

51For two-phase flows, the development of a two-parameter (b–ε)
turbulence model was initiated by Elghobashi and Abou-Arab
(1982, 1983).

52This contribution was included in the dissipative term 2 νT  : .
53Using the concept of a two-level macroscopic description of a

turbulized fluid was the starting point that allowed us to phenom-
enologically develop a hydrodynamic model of structured turbu-
lence as a self-organization in open nonequilibrium systems asso-
ciated with fluctuating media (see Kolesnichenko, 2004).
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ent turbulence) associated with the stochastic small-
scale pulsational motion of an eddy fluid and the coher-
ent component54 embedded in this almost uniform pul-
sating field, an ensemble of mesoscale ordered vortex
structures (multimolecular formations).

For the subsystem of turbulent chaos, we postulate
the Gibbs fundamental identity (Kolesnichenko, 1998)

(165)

Using this identity, we can determine in a well-know
way (see, e.g., de Groot and Mazur, 1964) the thermo-
dynamic structure of the vortex continuum, i.e., intro-
duce the specific internal energy Eturb(x, t), specific
entropy Sturb(x, t), pressure pturb(x, t) ≡ 2/3 Eturb, and
temperature55 Tturb(x, t) of turbulization. The various
relations between the parameters Eturb, Sturb, Tturb, and
pturb that can be derived in a standard way may then be
interpreted as the “equations of state” for the subsystem
under consideration. Below, we assume that the internal
energy of the subsystem of turbulent chaos Eturb(x, t) is
identical to the turbulence energy, Eturb(x, t) =

/2  = b(x, t), and that the subsystem of turbulent
chaos is an ideal gas in the thermodynamic sense, b =
3/2pturb = 3/2�gd Tturb, where �gd = kB/�gd, �gd is the
mean molecular mass of the gas-suspension particles
(the cardinal assumptions of the model). Using the
Gibbs identity (165), Eq. (164) takes the form

(166)

which, by analogy with (51), can be written in the form
of a balance equation,

Let us now use Eq. (166) to analyze the steady-non-
equilibrium regime of developed (Reglob � 1) turbu-
lence of the gas–dust mixture in a disk system. Natu-
rally, its realization requires the existence of a continu-

54According to the currently available experimental data, the
coherent turbulent structure can be defined as a connected, fluid
mass with vorticity correlated in phase (i.e., coherent) in the
entire region of coordinate space occupied by the structure. The
formation of granules in the solar photosphere is a clear example
of the existence of a vast family of coherent structures in a turbu-
lent flow that appear against the background of small-scale turbu-
lent motion.

55The thermodynamical temperature of turbulization of the sub-
system of turbulent chaos is not reduced to the absolute tempera-
ture in the general case.
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ously acting turbulization mechanism (e.g., the large-
scale velocity shear of the flow of material related to its
differential rotation around the proto-Sun or the ther-
mal-convective large-scale instability) that transfers the
kinetic energy of the averaged flow to the vertex motion
on large scales and that does not allow the subsystem of
turbulent chaos to reach a complete thermodynamic
equilibrium for a long time. This energy source must
have a power that would compensate, in particular, for
the expenditure of the turbulent energy dissipated into
heat through “molecular” viscosity. For this steady-
nonequilibrium regime, almost all of the expendable
turbulence energy is known to be transferred without
noticeable losses through the inertial interval to the
dissipative interval (see Landau and Lifshitz, 1987).
Then, an internal equilibrium is established in the
structure of the subsystem of turbulent chaos56 at
which DS turb/Dt ≅ 0 (the entropy of chaos does not

change along the path,  ≡ /T turb ≅ const

(Kolesnichenko, 2003). This implies that the produc-

tion  of turbulization entropy (due to internal dis-

sipative processes) is offset by its outflow ; i.e.,

there is no total production of entropy Sturb,  =

 +  ≅ 0. Thus, the subsystem of turbulent

chaos exports its entropy into the “external medium,”
i.e., gives it up to the subsystem of averaged motion. It
is important to keep in mind that the conditions of this
kind are sufficient for the formation of dissipative
coherent structures in an “open” vortex continuum (see
Prigogine and Stengers, 1994).

Deriving the correction function to the coefficient
nturb. Thus, for the locally steady state of a developed
turbulized flow in the disk, Eq. (166) can be written as

(167)

where, by analogy with the dimensionless dynamic
Richardson number

(168)

56In fact, all of the existing semiempirical theories of turbulence
assume (explicitly or implicitly) the existence of an internal equi-
librium in the turbulence structure, when the production of turbu-
lence energy is equal to its dissipation at each point.
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that allows for the effect of thermal convection on the
generation of turbulence in the disk compared to the
dynamical factors (here, Ri is the gradient Richardson
number), we introduced the dimensionless dynamic
Kolmogorov number57

(169)

which is a criterion for the dynamical activity of dust
particles in a turbulized shear flow of disk material
(Kolesnichenko, 2000). The introduced dimensionless
parameters are criteria for the dynamical activity of baro-
clinic disk material. It follows from (168) that Ri < 0 for
–∇z〈T〉 > gz/〈cp〉 (i.e., for unstable thermal stratification
of the disk material) and Ri > 0 for –∇z〈T〉 < gz/〈cp〉 (for
stable stratification); for indifferent stratification, Ri = 0.
However, the presence of suspended fine particles in
the flow always causes a decrease in turbulent energy,
since the gradient Kolmogorov number is always posi-
tive, K > 0 (see Barenblatt and Golitsyn, 1974). Thus,
the dimensionless Kolmogorov number K allows for
the inverse effect of the stratification (in disk thickness)
of the volume concentration of small dust particles on
the growth of turbulence in the disk.

Assuming, according to the hypotheses by Kolmog-
orov (1942), that the kinematic coefficient of turbulent
viscosity νturb and the dissipation rate of turbulent
energy into heat ε depend only on two flow parameters,
the turbulence energy b and the local turbulence scale
length l(x), we obtain (see Eq. (97))

(170)

Here, since the scale length l(x) is uncertain, the con-
stant in the expression for νturb is taken to be unity and
the numerical factor 1/α2 is assumed, to a first approx-
imation, to be constant. Let us represent the term (see
Eq. (151))

57In fact, only the first term in Eq. (169) is the Kolmogorov number
(at ρg = const, the number K expresses the relative expenditure of
turbulent energy on the suspension of particles by the carrier
flow); the second term, which describes the influence of gas inho-
mogeneity on turbulence, is the so-called Prandtl criterion.

K f

gz/ρg( ) Jd
turb( )z

2ρνturbD : D
---------------------------------≡ 1

Scturb
------------

gz/ρg( )∇z Cd〈 〉

2D : D
-----------------------------------–=

=  
1

Scturb
------------

σ〈 〉gz ∇zs s∇z ρgln–[ ]

2D : D
------------------------------------------------------–

K

Scturb
------------,=

° ° ° °

° °

νturb l b, ε 1

α2
-----b3/2

l
--------.= =

ρσrel Prel'  : ∇u '–≡

=  sρdCg ww( ) ' : ∇u '

≅ ρdww : sCg' ∇u ' Cg〈 〉s '∇u '+( ),



40

SOLAR SYSTEM RESEARCH      Vol. 40      No. 1      2006

KOLESNICHENKO, MAROV

which is responsible for the additional generation of
turbulence energy at large Reynolds numbers (in the
wakes behind the moving large particles) as58

(171)

where β is an empirical constant. It should be noted that
Eq. (171) is similar in form to the expression59 that was
derived by Varaksin (2003) using a self-similar solution
for the far axisymmetric turbulent wake (Yarin and
Hetsroni, 1994) and by Derevich (1994) using a
semiempirical approach and that is valid only at a very
low volume concentration  of the disperse phase,
when there is no interference of the wakes behind indi-
vidual particles.

Substituting (170) and (171) in (167) yields

(172)

Equation (172) breaks up into two equations: b = 0 that
corresponds to a laminar flow in the disk system, and

(173)

that describes the steady turbulent flow of a gas suspen-
sion. Eq. (173) has real solutions only at Ri + K <
(Ri + K)cr = Scturb (at Ri + K ≥ Scturb, only one real solu-
tion, b = 0, pertaining to a laminar flow exists). Let the
regime be turbulent; then,

(174)

We see from (173) that the presence of large solid par-
ticles in the flow always causes an increase in turbulent
energy, since the averaged kinetic energy of the relative

phase motion (∝ ) for them is comparable to the
turbulence energy b.

Thus, we obtain for the local coefficient of turbulent
viscosity in a gas–dust disk

(175)

58Formula (171) for the term that models the additional generation
of turbulence energy by large particles has been suggested for the
first time.

59Formula (171) is identical to the expression σrel = β* /dp

(Varaksin, 2003) at /  ≡ dd/l. Here, β* = a(CDδ/ξd)4/3; ξd is
the mixing length for the dust particle concentration; δ is the
wake half-width; CD(Red) is the coefficient of resistance for the
particle (a = 0.0027, δ/ξd = 5).
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where

(176)

(177)

are the correction dimensionless functions that allow,
respectively, for the inverse effect of the dust and heat
transfer on the growth of turbulence in the protoplane-
tary disk (ϕ) and for the influence of medium and
coarse particles on the turbulent heat and mass transfer
in the flow and their contribution to the coefficient of
turbulent viscosity for the gas suspension (ϕ1).

STEADY MOTIONS IN A TURBULIZED SUBDISK

As an illustration of the approach developed here,
let us now use the general relations derived above to
model the protoplanetary gas–dust cloud that rotated
around the proto-Sun at an early stage of its evolution,
until it lost the gas component, based on a schematized
description of a steady axisymmetric turbulized flow of
disk material, which, however, leads to manageable and
numerically solvable equations. Since we are eventu-
ally interested in the spatial distribution of thermohy-
drodynamic parameters inside the dust layer (in the
subdisk) formed when solid particles settled to the
equatorial plane of the proto-Sun in the presence of
developed turbulence in the disk, for completeness, it
will also be important to consider simple mechanical
properties of the rotating gas–dust cloud as a whole. We
will analyze the disk system under the following
assumptions:

(1) we investigate a slowly evolving gas–dust cloud
that rotates around a fixed (in space) z axis with an
angular velocity Ω(r, z);

(2) the rotation is assumed to be so slow that the
meridional circulation of the protoplanetary cloud
material may be ignored (in essence, the velocity has
only the ϕ component for Keplerian accretion disks,
i.e., uz � ur � uϕ;

(3) the magnetic fields play no significant role (the
figure of the cloud is known to become flattened in the
absence of a macroscopic magnetic field);

(4) the disk configuration is assumed to be station-
ary in an inertial frame of reference with the origin at
the center of mass of the proto-Sun;

(5) the existence of a midplane of symmetry that
coincides with the equatorial plane of the proto-Sun
defined by the condition z = 0 is postulated for a baro-
clinic disk (the equation of state (136) is valid for its
material);

(6) the ratio of the disk half-thickness hdisk(r) to its
radius is assumed to be much smaller than unity,
hdisk(r)/r � 1 (the thin-disk condition);

ϕ ϕ Ri K,( ) 1 Ri K+( )/Scturb– ,≡=

ϕ1 ϕ1 s CD δ/ξd dd/l, , ,( )=

≡ 1 α2a CDδ/ξd( )4/3 dd/l( )2s–
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(7) we neglect the self-gravity of the disk material
compared to the gravitational field of the proto-Sun;

(8) the radiation pressure in the disk is assumed to
be much lower than the gas pressure, pR � pg;

(9) the gas–dust disk is optically thick to radiation at
all frequencies;

(10) we disregard the chemical reactions and phase
transitions and assume the composition of the disk gas
phase to be homogeneous;

(11) the large-scale velocity shear of the material
related to its differential rotation around the proto-Sun
is assumed to be responsible for the turbulization of a
Keplerian protoplanetary disk.

Axisymmetric Motion in a Gas–Dust Disk

When rotating around the proto-Sun almost exactly
according to Kepler’s law, each gas-suspension element
in the disk slowly moves radially inward, since the
deceleration related to the forces of viscous friction
between the adjacent cylindrical layers rotating with
different angular velocities leads to a redistribution of
specific angular momentum and the appearance of a
radial mass flow. Thus, the main mass of the disk mate-
rial slowly (compared to the orbital motion) drifts
toward the center of mass along a flat spiral trajectory
as the angular momentum, together with the smaller
mass, is transferred outward (in view of the conserva-
tion law), from the inner disk regions to the outer ones.
Concurrently, the turbulent stresses arising from the
relative shear of the separate layers of disk material
during their orbital motion lead to viscous heat dissipa-
tion. The thin-disk condition is known to imply that the
disk temperature is relatively low and the pressure gra-
dient is much smaller than the two main mechanical
forces, the gravitational and centrifugal ones (see, e.g.,
Shapiro and Teukolsky, 1983). However, low tempera-
tures are maintained only if the viscous heat dissipated
in the turbulized system is effectively radiated outward
and is not accumulated in the disk. In the steady state,
the bulk of this heat must be radiated by the upper and
lower disk surfaces (because the disk is thin and the
radiation is directed mainly vertically rather than radi-
ally). Thus, a thin accretion disk must be highly nona-
diabatic.

Below, we will use an inertial cylindrical (r, ϕ, z)
coordinate system with the coordinate origin at the cen-
ter of mass; the z = 0 plane is assumed to coincide with
the midplane of symmetry of the disk. We will also
assume that the averaged motion of the cosmic fluid has
only an azimuthal component,

(175)

and that the true flow velocity of the gas–dust mixture
randomly pulsates about its mean value, varying irreg-
ularly in the meridional and azimuthal directions. It can

ur〈 〉 0, uϕ〈 〉 Ω r z,( )r, uz〈 〉 0,= = =

be shown that, if the disk material is in a state of quasi-
steady rotation in an inertial frame of reference, then it
necessarily possesses axial symmetry (∂/∂ϕ = 0):  =

(r, z),  = (r, z),  = (r, z),  = (r, z), 〈T〉 =
〈T(r, z)〉, Ω = Ω(r, z), etc. (Tassoul, 1979). Note that the
mass conservation law (85) in the steady-state case under
consideration always holds, since the motions are axi-
symmetric and there are no meridional flows, ∇ · 〈u〉 = 0.

Momentum conservation equations. If we take
into account the matter–radiation interaction inside the
disk up to the terms of the lowest order in |〈u〉|/c (see
footnote24), then the three components of the averaged
equation of motion (107) can be written as60 

(176)

(177)

(178)

where g = {gr, 0, –gz} is the effective gravity (per unit
mass) corrected for the centrifugal acceleration; ΩK(r, z) ≡

 is the Keplerian angular velocity;

ΩK, mid(r) ≡ ΩK(r, 0) =  is the Keplerian

angular velocity in the midplane of the disk; (r, z) is
the thermal pressure of the disk medium related to the
density (r, z) and temperature 〈T(r, z)〉 by the averaged

equation of state (55),  = 〈�〉〈T〉; pturb(r, z) = 2/3 b =

60Although T Tauri stars probably have a high dust concentration
throughout the disk thickness (see, e.g., Beckwith et al., 2000),

the additional stresses  related to the relative motion of the
gas and the coarse dust effectively act only in the region immedi-
ately adjacent to the equatorial plane of the disk (small compared
to the entire disk) and, therefore, were omitted in Eq. (178) (see
the next section).
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1/3  is the turbulization pressure (see Eq. (110));
c is the speed of light in a vacuum;

(179)

(see Eqs. (110) and (B.8)). In writing Eq. (176), we
took into account the fact that the gravitational force is
balanced by the centrifugal force in the radial direction
(perpendicular to the rotation axis); i.e., the total gas-
suspension pressure gradient ∂(  + pturb)/∂r is very
small and the rotation is almost Keplerian (however,
this gradient eventually serves as the driving force of
the radial drift of dust particles toward the disk center).
On the other hand, since there is no net motion of the
gas suspension in the vertical direction (perpendicular
to the midplane of the disk), the momentum conserva-
tion along the iz axis is reduced to the hydrostatic equi-
librium condition under which the equilibrium in the
z direction is maintained by the pressure gradient.61

The gradient ∂(  + pturb)/∂z determines the main direc-
tion of the buoyant force in the gravitational field of the
central mass (see Eq. (164)), which contributes, in par-
ticular, to the additional generation of turbulent energy
through convective instability in the vertical direction
(between the midplane and the surfaces of the disk).
Thus, it follows from Eqs. (176) and (177) that viscous
dissipation does not affect the r and z components of the
equation of motion for the entire disk, which break up
into separate equations for the averaged radial and ver-
tical motions.

In contrast, the ϕ component of the equation of
motion (178) (in essence, the equation for determining

61The following expression for the half-thickness of a turbulized
disk can be derived by substituting the differentials in Eq. (177)
with finite differences (i.e., by substituting ≈  + pturb for ∆(  +

pturb), where (  + pturb) is the total pressure calculated at z = 0,

and substituting ∆z ≈ hdisk): hdisk = /ΩK, mid ≅

cs /ΩK, mid (cf. Eq. (160)). In this relation, ΩK, mid =

 is the Keplerian angular velocity; cs is the speed of sound

of the gas suspension (see Eq. (57)) in the midplane of the disk.

ρ u '' 2
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1 2/3bcs
2–
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G��/r
3

p

the angular velocity Ω(r, z) for given boundary condi-
tions), which using the transformations (see Appendix B)

(180)

(181)

(in what follows, the total coefficient of shear viscosity
is denoted by µ(r, z) ≡ νturb(r, z) + µrad(r, z) for short)
can be reduced to

(182)

(where ∇ · A ≡ r–1∂(rAr)/∂r + ∂Az/∂z is the divergence
in cylindrical coordinates), describes the irreversible
change in specific angular momentum J(r, z, t) ≡
[r2Ω(r, z, t)] through viscous friction and, in addition,
allows for the transfer of angular momentum by the
total radiative flux qrad (the second term on the right-
hand side of Eq. (179) allows for the loss of angular
momentum via the radiation emitted by rotating disk
regions). The deceleration by radiation is known (see,
e.g., Tassoul, 1982) to be stronger than the angular
velocity diffusion through viscosity if 〈T〉/|∇〈T〉| is
small compared to 〈Ω〉/|∇〈Ω〉|, which is probably the
case only in the disk regions adjacent to its emitting
surface Σ.

Below, however, we will restrict our analysis to
steady or quasi-steady motions inside the disk, where, to
terms of the order of |〈u〉|/c, Eq. (182) can be reduced to

(183)

Since the shear stress vector must become zero at the
outer disk boundary Σ, the following condition must be
satisfied

(184)

where n is the outer normal to the disk surface.
Let us formulate one curious result pertaining to the

problem of a slowly evolving viscous disk in connec-
tion with Eqs. (183) and (184). For this purpose, we
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will write the total dissipative function of the disk in the
steady state as

(185)

where ℘ is the disk volume (see Eqs. (B8) and (B.11)).
If we now consider an arbitrary disk rotation law,
Ω(r, z) + δΩ(r, z, t), on which we impose only the con-
straint that the configuration surface Σ and volume ℘
are conserved, then the classical results(which, in
essence, was obtained by Helmholtz) is that each solu-
tion of Eqs. (183) and (184) has the property that the
total power (185) dissipated by friction is an absolute
minimum compared to the power for any other motion
that agrees with the boundary Σ and the volume ℘.

The conservation of energy. To model the internal
thermal structure of the protoplanetary disk around the
young Sun at the T Tauri stage, we must invoke the
energy equation (154), in which the dissipation of tur-
bulent energy is the main internal source of heating. If
we disregard the chemical reactions and the evapora-
tion and condensation of disk material, then this equa-
tion for quasi-steady axisymmetric motion takes the
form62 

or

(186)

since the radiation for a thin disk is directed mainly ver-
tically rather than radially (see also Eq. (198)).

In Eqs. (185) and (186), the possible local heating
sources of the gas–dust cloud, which are related, in par-

62The possible additional disk heating source related to the term

 : D effectively acts only in the dust subdisk (i.e., in a vol-
ume small compared to the entire disk) and, therefore, was omit-
ted in Eq. (186).
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ticular, to the absorption of solar electromagnetic and
corpuscular radiation by the gas–dust disk components
and its subsequent transformation through various radi-
ative processes, reradiation, scattering, photochemical
and chemical reactions, etc., are denoted by Q�. The
complexity and multiplicity of chemical and photo-
chemical reactions in the protoplanetary disk medium
is generally attributable to the presence of basic chem-
ical elements of the Solar system that constituted the
initial gas-mixture components and to the existence of
ionization (dissociation) agents in the form of energetic
photons and photoelectrons (photolysis products) (see,
e.g., Willacy et al., 1998). Their absorption leads to the
dissociation, ionization, and/or excitation of rotational
and vibrational levels of the gas-mixture components;
each of these reactions can proceed in both forward and
reverse directions. In practical calculations, by no
means all of the elementary processes responsible for
the thermal balance of a disk medium can be adequately
taken into account in the corresponding models. For
this reason, when physically self-consistent problems
of modeling the evolution of the chemical composition
and hydrodynamics of a disk are formulated, one of the
most important problems is to accurately take into
account the contributions from the matter–radiation
interaction in the structure of the energy equation to
determine the so-called heating function of the material
that allows for the fraction of the absorbed solar radia-
tion transformed into heat (see, e.g., Marov and
Kolesnichenko, 1987). Estimating this function involve
well-known difficulties and requires concretizing the
chemical stage of the disk evolution.

The turbulent heat flux  and the radiative energy
flux qrad, z emitted by the disk are defined by Eqs. (127)
and (128)

(187)

where χrad(r, z) = 4ca〈T〉3/3  is the coefficient of radi-

ative heat conductivity for the disk medium;  is the
total Rosseland mean opacity of the gas suspension (see
Eq. (72)), which depends significantly on the presence
and height distribution of dust particles in the pro-
toplanetary cloud (see, e.g., Pollack et al., 1985);
µrad(r, z) = 4a〈T〉4/15c  is the coefficient of radiative
viscosity. Equation (187) should be complemented by
the following boundary conditions in the midplane (in

qz
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view of the disk symmetry) and on the upper surface of
the disk:

 

(188)

 

where 

 

σ

 

 is the Stefan–Boltzmann constant; 

 

L

 

�

 

 is the
solar luminosity), which allow for the heat balance at
the boundaries. The first term on the right-hand side of
Eq. 

 

(**)

 

 allows for the blackbody radiation of the disk
surface, while the second term describes the attenuated
radiative flux from the protostar incident on the disk
surface; the attenuation factor (Kusaka 

 

et al.

 

, 1970)

 

(189)

 

depends on the disk geometry and the radius  and

luminosity  of the proto-Sun (in particular, for

 

 = 7
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�

 

 and 

 

 = 5

 

R

 

�

 

 

 

(see Watanabe 

 

et al.

 

,

1990), 

 

f

 

0

 

 = 0.1 at 

 

r

 

 = 1 AU).

The dust transfer equation. The averaged transfer
equation (92*) for the dust concentration 〈Cd〉 = ρd /
of the disk material should be used to model the evolu-
tion of a turbulized gas–dust cloud, particularly during
the formation of a dust subdisk (of thickness 2hsubdisk,
where hsubdisk is the upper boundary of the dust subdisk,
hdisk > hsubdisk) near its midplane. If we disregard the

evaporation and condensation (  = 0) of solid parti-

cles, then there is a balance between the dust settling

 =  ≅ 〈Cd〉  and the turbulent mixing  =

– ∇〈Cd〉 in the steady state (see Eq. (86));

Eq. (92*) then takes the form

(190)

or

(191)
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where  ≡ (  – ) is the averaged relative velocity
of the dust and gas defined by Eq. (101); in cylindrical
coordinates, it takes the form

(192)

(193)

(194)

The r, ϕ, and z components of the averaged relative
velocity  derived using the equations of motion (176)
and (177) then appear as

(195)

where the parameter ζ = ΩK, mid/ θgd � 1, because the
time it takes for quasi-equilibrium motion of the dust
and gas to be established (1/ θgd) in the disk is much
shorter than the Keplerian period (2π/ΩK, mid), which
determines the slow variation time scales of the macro-
scopic flow parameters. Here, we used the following
approximate equality that follows from Eq. (176):

(196)

In this equality, the small parameter is defined as63 

(197)

where the second estimation representation was
obtained using Eq. (210) (cf. Nakagawa et al., 1986;
Takeuchi and Lin, 2002).

The diffusion equation (190) can be simplified
depending on whether the gas or dust component dom-
inates in the disk region under consideration.

63It can be shown that including the pressure of turbulent chaos,
pturb = 2/3 b, will not change Eq. (194) in the case of developed
turbulence.
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A formula for the coefficient of turbulent viscos-
ity in the disk.

 

 The coefficient of turbulent viscosity in
Eqs. (179), (182), (187), and (190) is defined by rela-
tion (175). In the axisymmetric case under consider-
ation, the latter takes the form
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where
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is the adiabatic temperature gradient in the protoplane-
tary gas–dust disk; 
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 are, respectively, the adiabatic index and the
“gas constant” for the averaged two-phase continuum.
We see from Eqs. (198)–(201) that for an adiabatic tem-
perature distribution in height,

 

, (204)

 

the Richardson number is Ri = 0 and the temperature
gradient in the disk has no effect on the turbulent trans-
fer coefficients. In the case of temperature-unstable
stratification (Ri < 0) of the gas–dust disk, where the
temperature gradients are superadiabatic,

 

(205)

(the factor f, which characterizes the excess of the ver-
tical temperature gradient in the disk above the adia-
batic one, can reach f = 0.2 at r � 10 AU (see Makalkin
and Dorofeeva, 1995, 1996)), the turbulence energy
increases through the energy of instability in the direc-
tion perpendicular to the midplane of the disk (a con-
vective source of turbulence); the coefficient of turbu-
lent viscosity increases simultaneously. At the same
time, gas-suspension inhomogeneity always causes the
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turbulent energy to decrease, since the Kolmogorov
number is greater than zero, K > 0. The reciprocal
Schmidt number 

 

1/Sc

 

turb

 

 in Eq. (199) may be set equal
to unity when the shear stresses in the case of differen-
tial Keplerian disk rotation are the main turbulence
mechanism; however, it can be a factor of 2 or 3 larger
when thermal convection in the vertical direction is
responsible for the turbulence (see, e.g., Shakura 

 

et al.

 

,
1978).

Let us now show that the vertical gradient in angular
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 for the following reasons. If we assume (for
our estimation) that the disk is isothermal in the vertical
direction and neglect the terms of order 
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 or higher,
then the following formula (known for a laminar flow)
can be derived for the vertical gas-suspension den-
sity distribution in a turbulized disk
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 from Eq. (177):
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is the local scale height for the disk,

 

(208)

 

is the isothermal speed of sound in the turbulized
medium. The density, pressure, temperature, opacity,
etc. in any accretion disk have different spatial distribu-
tions, depending on its nature and the distance from
protostar and/or from the midplane of the disk. We will
assume that the radial distributions of such structure
parameters follow a power law (this is a common
assumption in astrophysical literature (see, e.g., Takeu-
chi and Lin, 2002)); then,
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where 

 

r

 

AU

 

 is the radius measured in AU. Using (206),
Eq. (176) can be rewritten as

whence
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It follows from Eq. (210) that
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which allows the vertical angular velocity gradient in
the dissipative function 
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 to be disregarded.
Thus, the following approximate relation for the

coefficient of turbulent viscosity is valid for the bulk of
the disk (except the regions close to the proto-Sun):
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For Eq. (212) to be formally identical to the Shakura–
Sunyaev formula (160), which is valid for gas-phase
accretion disks, we must set K = 0 and Ri = 0 in
Eq. (212). If we now substitute the angular velocity
of Keplerian rotation 
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length (see footnote61), then we will obtain νturb =
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which is identical to Eq. (160) (since the dimensionless
parameter α cannot be accurately calculated and
remains a free parameter in the disk structure equa-
tions, the factor 9/4 in Eq. (213) is of no fundamental
importance).

So, Eqs. (55), (176), (177), (183), (186), and (190)
form a system of six equations with six unknown func-
tions, (r, z), (r, z), 〈T〉(r, z), , , and Ω(r, z). Thus,
in principle, the structure of a gas–dust disk with the
dust component is completely defined by these equa-
tions together with the boundary conditions and rela-
tions (198) and (21*) for the turbulent transfer coeffi-
cients νturb and the coefficient of resistance θdg for a
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smooth spherical particle. A complete solution of the
formulated problem requires using numerical methods
and will be presented in a special publication.

 

The Regime of Limiting Saturation of a Gas–Dust Disk 
by Fine Dust Particles

 

As a simple example that illustrates the potentiali-
ties of the approach developed here, let us qualitatively
consider the model problem of the height distribution
of suspended fine dust particles in a steady gas–dust
flow (for temperature-neutral disk stratification, Ri = 0)
in a thin layer of “cosmic fluid” located near a dust–gas
subdisk (a layer of enhanced dust concentration, but
lower than the critical value at which gravitational
instability arises). We will assume that the concentra-
tion of solid particles in the subdisk atmosphere and in
the subdisk itself is so high that the inverse effect of the
disperse phase on the turbulent flow dynamics should
be taken into account to describe the gas-suspension
motion. Below, for simplicity, we assume the disk
material in the subdisk atmosphere to be isothermal and
the gas phase to be incompressible. In addition, we will
keep in mind that the sedimentation of solid particles
takes place without their large radial migration; there-
fore, the dust diffusion flux in the vertical direction
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. For steady motion of the dust
component in the atmosphere, the regular gravitational
settling of particles to the subdisk (the value 
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 is the gravitational settling velocity, is
assumed to be constant below) must then be balanced

by their upward turbulent transfer, i.e., 
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 = 0;
hence, using Eqs. (96) and (190), we obtain for the rel-
ative velocity in the vertical direction
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Since the additional stresses  associated with
the relative motion of the gas and coarse dust effec-
tively act in the subdisk, the meridional 
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 component of
the Reynolds equation (178) for the inner subdisk
regions is reduced to the equation
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(217)

 

Since the main direction in the entire disk is radial
(see Safronov and Guseinov, 1990), we may set for the
subdisk
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This equation shows that the flux density of the 
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momentum component along the vertical axis will be
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, in view of Eqs. (162) and (212),
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the Reynolds equation (215) for the subdisk atmo-
sphere can be taken in the form
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where
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V

 

∗

 

 is the so-called dynamic velocity (a natural velocity
scale for the flow near the subdisk “surface”). In
Eq. (220), we disregarded the contribution from the rel-
ative stresses compared to the Reynolds turbulent
stresses.
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is the dynamic Kolmogorov number. Thus, the z distri-
butions of the disk structure parameters can be calcu-
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argument.

Let us now determine the 
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 distribution of the dust
volume concentration and the angular velocity of a tur-
bulized flow carrying fine suspended particles for a
steady flow in the subdisk atmosphere. To integrate the
system of equations (224) generally requires knowl-
edge of the boundary conditions on the subdisk surface.
For example, if we eliminate 

 

ν

 

turb

 

 from (214) and (220),
then we will obtain

 

(225)

 where  

(226)

 

is a dimensionless parameter. Integrating Eq. (225)
yields
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At the same time, system (224) has properties pecu-
liar to this type of gas-suspension flow that allow a self-
similar solution independent of the boundary condi-
tions to be found.
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 This is because it contains only the
angular velocity gradient rather than the velocity itself.
This, in turn, implies that for an unlimited store of par-
ticles near the dust subdisk, in view of the inverse effect
of particles on the flow dynamics, one might expect the
existence of a gas-suspension flow regime in it at which
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The pattern of turbulent flows containing a solid admixture was
first studied by Kolmogorov (1954) when calculating the motion
of sediments and by Barenblatt and Golitsyn (1973) for atmo-
spheric problems.

l b
∂
∂z
----- r∂Ω r z,( )/∂z[ ] V*

2=

1

Scturb
------------l b

∂s
∂z
----- as+ 0, l z( ) γ *κ

α1/2
---------zΦ K f( )= =

b αV*
2 1 K f–=

K f σ〈 〉
G��z

r4
---------------- sa

V*
2 ∂Ω r z,( )/∂z

------------------------------------.=
⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

∂ sln
∂z

----------- ωγ *κ
V*
--------- ∂

∂z
----- r∂Ω r z,( )[ ],–=

ω Scturba/γ *κV*≡

s r z,( ) s r z,( ) z hsubdisk==

× ωγ *κ
V*

--------------r Ω r z,( ) ΩK,  mid r z ,( ) z h subdisk = –  [ ] –  
⎩ ⎭
⎨ ⎬
⎧ ⎫

 .exp



 

48

 

SOLAR SYSTEM RESEARCH

 

      

 

Vol. 40

 

      

 

No. 1

 

      

 

2006

 

KOLESNICHENKO, MAROV

 

the turbulent flow absorbs the maximum possible
amount of dust at a given dynamic velocity and other
flow parameters (see Barenblatt and Golitsyn, 1974).
This regime, which was called the “regime of limiting
saturation” in the literature, must be described by a spe-
cial solution of system (224) that is defined by the
parameters appearing only in the differential equa-
tions (224) themselves.

A group analysis of system (224) shows that it has
the solution

 

(228)
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-independent functions of 
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 to
be determined. Substituting these expressions in (224)
yields
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whence follows the functional equation
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intended to determine the specific (for the regime of
motion under study) Kolmogorov number 
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, by its physical
meaning, lies between zero and unity, the functional
equation at 
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 > 2 (which corresponds to a low flow
velocity or large particles) has no root; however, at 
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(the condition for the existence of the limiting satura-
tion regime), one root exists, 
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. Given (229), it
follows from the first relation (228) (at 
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) that

 

(231)

 

Using this relation and Eq. (226), we can easily obtain
the following limiting steady-state height distribution
of fine dust particles in the thin equatorial layer of the
subdisk:

(232)

which the flow approaches for an unlimited store of
dust on the underlying surface.

Formula (231) shows that the z velocity distribution
in the “near-surface” subdisk atmosphere in a turbulent
flow heavily loaded with particles is logarithmic (as
must be the case in a turbulized fluid near a “wall”), but
the presence of dust seemingly results in a decrease in
the Karman coefficient κ. This can be interpreted in
such a way that the gas-suspension flow under the effect
of dust particles for the same external conditions (the
same dynamic velocity V∗) is accelerated compared to
a flow of “pure” gas. In other words, the velocity gradi-
ents near the subdisk surface increase, which contrib-
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utes to the saltation effect, the separation and rise of a
large number of fine dust particles into its atmosphere
In turn, the presence of such a dust cloud with an
enhanced concentration of suspended fine particles
contributes to the intensification of all the possible pro-
cesses of turbulent coagulation, which lead to an
increase in the inertia of solid particles and to their
effecting settling to the subdisk. Thus, the possible
regime of limiting saturation of a rotating gas–dust
cloud near the subdisk by small dust particles is an
additional mechanism that speeds up the formation of
the subdisk itself by relatively large solid particles on
which turbulent pulsations have a weaker effect.

CONCLUSIONS AND PROSPECTS

Studying the origin and evolution of the Solar sys-
tem and the emergence of various natural conditions on
the Earth and other planets is one of the most important
trends in modern science. This problem can be solved
by performing a series of investigations on the most
topical issues of astrophysics, geophysics, and cosmo-
chemistry based on the development of a theory, the
generalization and analysis of experimental data, and
mathematical modeling. In recent years, the impressive
progress in astrophysics, the discoveries of protoplane-
tary disks and extrasolar planetary systems, and the
rapid development of computational mathematics have
enhanced the possibilities for comprehensive studies of
the physical structure and evolution of the protoplane-
tary gas–dust disks around young solar-type stars from
which the planets are currently believed to be formed.

Adequate cosmogonic models can be constructed
by studying the dynamical and thermal evolution of the
heterogeneous gas–dust material of a differentially
rotating protoplanetary disk with the inclusion of mag-
netohydrodynamic, turbulent, and radiative effects as
well as with the involvement of phase transitions,
chemical reactions, and coagulation processes. The
aggregate state of the main components of the pro-
toplanetary material, the location of their condensa-
tion–sublimation fronts, and, hence, the chemical com-
position of the planets, their satellites, asteroids, and
comets depend on the space–time distribution of ther-
mohydrodynamic parameters for the disk medium. The
cosmochemical data obtained by directly studying the
extraterrestrial material serve as an important con-
straint in determining how realistic the models of this
kind are.

Unfortunately, a large number of problems related
to this trend in research are still outstanding. These pri-
marily include the questions of the early evolution of
the Solar system and the reasons why it is unique com-
pared to the known planetary systems near other stars.
Developing numerical models for such a dynamical
system in which the evolution of an initial protoplane-
tary cloud sequentially leads to the formation of an
accretion gas–dust disk around the young Sun and a
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compacted dust–gas subdisk is of greatest interest.
Thus, the problem of reconstructing the evolution of the
protoplanetary gas–dust cloud that surrounded the pro-
ton-Sun brings to the fore the following:

—constructing a numerical model for the formation
of a dust layer (subdisk) near the midplane of the proto-
Sun and studying its flattening mechanisms in a quiet
gas and in the presence of turbulence;

—modeling the growth of gravitational instability in
a rotating subdisk (when the density of its material
becomes higher than a critical value due to its vertical
and radial contraction) and the formation and evolution
of protoplanetary dust condensations for the zone of
inner planets and for the disk periphery;

—modeling the accumulation of the Earth and planets;

—assessing the consequences for the chemical com-
position of the Earth, planets, asteroids, and comets.

In this paper, the early formation stage of a planetary
system, the stage of a protoplanetary gas–dust cloud, is
considered as the first step in studying the complex
problem of planetary cosmogony. Clearly, numerical
simulations of such a cloud are primarily related to the
construction of a basic model for a continuum medium
with complicated physical–chemical properties that
includes, in particular, the magnetohydrodynamic and
heat and mass transfer processes simultaneously taking
places in a turbulized accretion disk with allowance
made for the inertial effects of solid cosmic material
particles, radiation, evaporation, condensation, coagu-
lation, and various chemical transformations. Certain
aspects of the development of precisely this continuum
medium were embodied in this paper, in which the effi-
cient methods of invariant modeling of turbulent flows
in multicomponent reactive gas mixtures developed
previously (Kolesnichenko and Marov, 1999; Marov
and Kolesnichenko, 2002) were further generalized to
heterogeneous media. In our view, this study offers
prospects for considerably more complete and more
realistic modeling of the various processes of the evo-
lution of a differentially rotating protoplanetary gas–
dust turbulized disk. Rational schematizations that lead
to manageable and solvable equations are particularly
needed here to obtain reliable results and to understand
them. Our main results include the following:

(1) The formulation of a complete system of equa-
tions of two-phase multicomponent mechanics includ-
ing the relative motion of the phases, coagulation,
phase transitions, and radiation intended to formulate
and numerically solve the specific model problems of
consistently modeling the structure, dynamics, and
thermal regime of a protoplanetary accretion disk.

(2) The Favre probability-theoretic averaging of the
stochastic equations of heterogeneous mechanics with
the goal of phenomenologically describing the turbu-
lent flow of the disk material and the derivation of the

defining relations for various turbulent flows needed to
close the equations of mean motion.

(3) The development of a semiempirical method for
modeling the coefficient of turbulent viscosity in a two-
phase disk medium including the inverse effect of the
dispersed phase.

(4) The description of the influence of inertial
effects of solid particles on turbulence parameters in the
disk, in particular, on the additional generation of tur-
bulent energy by large particles, in terms of the model
of the medium under consideration.

(5) The development of a parametric method of
moments for solving the Smoluchowski intergo-differ-
ential coagulation equation for the particle size distri-
bution function based on the fact that the sought-for
distribution function belongs to a certain parametric
class of distributions.

(6) Analysis of the “regime of limiting saturation” of
the subdisk atmosphere by fine dust particles that con-
tributes to the effective settling of solid particles to the
midplane.

The results of our numerical solution of the specific
problems that reproduce the individual evolutionary
stages of a protoplanetary gas–dust cloud based on the
model of a disk continuum medium developed here
with complicated physical–chemical properties will be
presented in ensuing publications.
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APPENDIX A

 

Solving the Kinetic Coagulation Equation 
by the Method of Moments

 
Let us consider the method of moments for solving

the kinetic coagulation equation (33) for the case where
the particle size distribution depends on one space
coordinate 

 

z

 

. For the problem considered here, this cor-
responds to steady motion in a dust layer as particles
settle to the midplane of the disk under gravity.

The method of moments consists in reducing the
kinetic coagulation equation (33) to a system of ordi-
nary differential equations for the moments
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of the distribution function 

 

f

 

(

 

U

 

, 

 

z

 

)

 

. To derive such a sys-
tem, let us multiply both sides of the simplified equa-
tion (33)
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To express the right-hand sides of the equations of
this system in terms of the moments, we must specify
the coagulation kernel and make the assumption
regarding the form of the distribution function. Let us
consider kernels of the type
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to determine the unknown coefficients βj, we should
choose s (interpolation) points xi whose number is
equal to the number of unknown coefficients βj and
assume that

(A.7)

In order that no moments with an order higher than
the degree of uniformity of the kernel appear after the
subsequent integration of expansion (A.6), the quantity
αj should be defined by the equality αj = αj/(K + 1).
Different interpolation polynomials can be obtained at
different values of K.

Substituting (A.5) in (A.2)–(A.4) yields the follow-
ing infinite system of equations for the moments:
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possible: an approach related to the approximation (by
Lagrangian polynomials) of fractional moments via
integer moments (se, e.g., Loginov, 1979) and a para-
metric method.

Below, we restrict our analysis to the parametric
method, which is based on the fact that the sought-for
distribution function f(U, z) belongs to a certain para-
metric class of distributions. Let us assume, for sim-
plicity, that the distribution f(U, z) remains in the class
of distributions to which the initial distribution belongs
after coagulation and that only its statistical parameters,
the mean, variance, etc., change (with height) as the
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eter lognormal distribution as the initial dust particle
size (diameter d) distribution.

The probability density of the lognormal law
depends on the mean 〈lnd〉 and variance of the loga-

rithm of the diameter  ≡ 〈(lnd – 〈lnd〉)2〉:

(A.11)

The median of the distribution is known to be
defined by the relation µ* = exp(〈lnd〉), while the mean
value of the diameter itself and its variance are, respec-
tively,

(A.12)

(A.13)

Using the above relations, we can derived formulas for

the statistical parameters (  and µ*) of the lognormal
distribution (A.11) only via the mean particle diameter 〈d〉
and its relative variance β2 ≡ 〈(d – 〈d〉)2〉/〈d〉2:

(A.14)

To determine the density of the initial distribution of
the dust particle volume U = (π/6)d3, we use the for-
mula
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(which is valid for a strictly increasing function U =
U(d) of the random variable d (Khan and Shapiro,
1969)) and distribution (A.11); as a result, we obtain

(A.16)

where µ = (π/6)µ*3.

Let the coagulation in the disk do not change this

distribution and only the parameters µ(z) and (z)
change with height. We introduce the moments of the
lognormal distribution
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According to Lee (1983), the following representa-
tion is valid for any moment of order p:

(A.18)

(A.19)

which allows the fractional moments in (A.8)–(A.10) to

be expressed in terms of M1, µ, and . As a result, we
obtain the following parametric system of two ordinary
differential equations (the number of equations must be
equal to the number of unknown coefficients) to deter-

mine the parameters µ(z) and (z) from given bound-

ary values of µ(hdisk) and (hdisk):

(A.20)

(A.21)

(A.22)

This parametric system of nonlinear equations can be
solved only numerically. Our numerical simulations for
the problem of dust settling to the midplane of the disk
will be presented in a special paper. Here, we note that
the change in the mean number of particles with height
Nd(z) can be estimated by assuming that the variance
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 remains constant. In this case, restricting our selves
to the first two moments, we find from (A.21) that

(A.23)

The solution of this equation obtained using the bound-

ary condition Nd(hdisk) =  = s/ (hdisk) is

(A.24)

where

(A.25)

Here, (hdisk) = (π/6)〈d〉3 = µ(hdisk)exp(3/2 ) is the
upper limit of the mean volume (this formula follows

from (A.14)). Thus, using the relation (z) = s/Nd, we
can determine the change in the mean particle volume
with height. For relatively low z (i.e., when the particles
are already near the midplane of the disk), q[(hdisk –
z)/wz] � 1, it follows from (A.25) that

(A.26)

We see from this expression that the mean number of
particles in the system for a fairly long coagulation time
ceases to depend on their initial distribution, i.e., as it
were, “forgets its past, and can be described by a uni-
versal function whose form is determined only by the
coagulation kernel. A similar analysis can also be per-
formed with other possible dust particle volume distri-
butions in a coagulating turbulent flow, for example,
with the Gamma distribution.

APPENDIX B

Cylindrical Coordinates

Here, for convenience, we present, in cylindrical
coordinates r, ϕ, and z (for the axisymmetric case,
∂/∂ϕ = 0), the expressions for the various operators in
the above equations of heterogeneous mechanics that
act on
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(1) scalars:

(B.1)

(B.2)

(2) vectors:

(B.3)

(B.4)

(3) dyads:

(B.5)

(B.6)

For the deformation tensors and the deformation rate
tensor, we then have
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The two-point Gibbs multiplication is an operator
that is widely used in hydrodynamics. According to the
Gibbs notation, if a, b, c, and d are arbitrary vectors,
then ab : cd = (a · c)(b · d). In particular, for unit vec-
tors, we can write

(B.9)

for two dyads, we then have

(B.10)

or

(B.11)
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